A. 金融需要 hadoop,spark 等这些大数据分析工具吗使用场景是怎样的
看看用亿信ABI做的相关案例
银行大数据应用
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。总的来看银行大数据应用可以分为四大方面:
1、客户画像
客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于银行自身拥有的数据有时候难以得出理想的结果甚至可能得出错误的结论。比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,得到的真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
2、精准营销
在客户画像的基础上银行可以有效的开展精准营销,包括:
(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
3、风险管理与风险控制
在风险管理和控制方面包括中小企业贷款风险评估和欺诈交易识别等手段
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如从一个不经常出现的国家为一个特有用户转账或从一个不熟悉的位置进行在线交易)进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。
4、运营优化
(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
B. 大数据spark 和 hodoop 这两个什么情况未来哪个会取代哪个
Hadoop包括MapRece和HDFS,目前很火的Spark,如果说代替,只是会代替Hadoop中的MapRece。Spark在任务调度和数据可靠性方面,确实比MapRece要快很多,而且支持将数据缓存到内存中,下次查的时候直接基于内存访问。
Spark:
是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速, Spark 是一种与 Hadoop
相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark
启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
尽
管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop
文件系统中并行运行。通过名为Mesos的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室
(Algorithms,Machines,and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。
虽然 Spark 与 Hadoop 有相似之处,但它提供了具有有用差异的一个新的集群计算框架。首先,Spark
是为集群计算中的特定类型的工作负载而设计,即那些在并行操作之间重用工作数据集(比如机器学习算法)的工作负载。为了优化这些类型的工作负
载,Spark 引进了内存集群计算的概念,可在内存集群计算中将数据集缓存在内存中,以缩短访问延迟.
在大数据处理方面相信大家对hadoop已经耳熟能详,基于GoogleMap/Rece来实现的Hadoop为开发者提供了map、rece原
语,使并行批处理程序变得非常地简单和优美。Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Rece两种操作。比如
map,filter, flatMap,sample, groupByKey, receByKey, union,join,
cogroup,mapValues,
sort,partionBy等多种操作类型,他们把这些操作称为Transformations。同时还提供Count,collect,
rece, lookup,
save等多种actions。这些多种多样的数据集操作类型,给上层应用者提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的
Data Shuffle一种模式。用户可以命名,物化,控制中间结果的分区等。可以说编程模型比Hadoop更灵活.
C. spark快速大数据分析的源码怎么使用
如果你没有这方面的专业知识的话,肯定是没法下手去做的,是需要大数据方面专业的人才才能解决的,必须学过java,linux,mysql,hadoop,spark的工具才能使用,还谈不上熟练的层次呢。柠檬学院大数据。
D. Spark为什么能成为大数据分析主流工具
简单,实用价值高!
-
E. spark快速大数据分析怎么样
首先大数据spark技术是基于Python和scala编程语言的,熟悉掌握这两种编程语言是必须的;
其次是要学习spark应用场景、模型和集群搭建等内容;
还有后期的大数据处理等都是必要的知识点
F. 如何使用spark做大数据分析
动手实验Apache Spark的最好方式是使用交互式Shell命令行,Spark目前有Python Shell和Scala Shell两种交互式命令行。
可以从 这里下载Apache Spark,下载时选择最近预编译好的版本以便能够立即运行shell。
目前最新的Apache Spark版本是1.5.0,发布时间是2015年9月9日。
tar -xvzf ~/spark-1.5.0-bin-hadoop2.4.tgz
运行Python Shell
cd spark-1.5.0-bin-hadoop2.4
./bin/pyspark
在本节中不会使用Python Shell进行演示。
Scala交互式命令行由于运行在JVM上,能够使用java库。
运行Scala Shell
cd spark-1.5.0-bin-hadoop2.4
./bin/spark-shell
执行完上述命令行,你可以看到下列输出:
Scala Shell欢迎信息
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 1.5.0
/_/
Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_25)
Type in expressions to have them evaluated.
Type :help for more information.
15/08/24 21:58:29 INFO SparkContext: Running Spark version 1.5.0
下面是一些简单的练习以便帮助使用shell。也许你现在不能理解我们做的是什么,但在后面我们会对此进行详细分析。在Scala Shell中,执行下列操作:
在Spark中使用README 文件创建textFileRDD
val textFile = sc.textFile("README.md")
获取textFile RDD的第一个元素
textFile.first()
res3: String = # Apache Spark
对textFile RDD中的数据进行过滤操作,返回所有包含“Spark”关键字的行,操作完成后会返回一个新的RDD,操作完成后可以对返回的RDD的行进行计数
筛选出包括Spark关键字的RDD然后进行行计数
val linesWithSpark = textFile.filter(line => line.contains("Spark"))
linesWithSpark.count()
res10: Long = 19
要找出RDD linesWithSpark单词出现最多的行,可以使用下列操作。使用map方法,将RDD中的各行映射成一个数,然后再使用rece方法找出包含单词数最多的行。
找出RDD textFile 中包含单词数最多的行
textFile.map(line => line.split(" ").size)
.rece((a, b) => if (a > b) a else b)
res11: Int = 14
返回结果表明第14行单词数最多。
也可以引入其它java包,例如 Math.max()方法,因为map和rece方法接受scala函数字面量作为参数。
在scala shell中引入Java方法
import java.lang.Math
textFile.map(line => line.split(" ").size)
.rece((a, b) => Math.max(a, b))
res12: Int = 14
我们可以很容易地将数据缓存到内存当中。
将RDD linesWithSpark 缓存,然后进行行计数
linesWithSpark.cache()
res13: linesWithSpark.type =
MapPartitionsRDD[8] at filter at <console>:23
linesWithSpark.count()
res15: Long = 19
上面简要地给大家演示的了如何使用Spark交互式命令行。
弹性分布式数据集(RDDs)
Spark在集群中可以并行地执行任务,并行度由Spark中的主要组件之一——RDD决定。弹性分布式数据集(Resilient distributed data, RDD)是一种数据表示方式,RDD中的数据被分区存储在集群中(碎片化的数据存储方式),正是由于数据的分区存储使得任务可以并行执行。分区数量越多,并行越高。下图给出了RDD的表示:
Display- Edit
想像每列均为一个分区(partition ),你可以非常方便地将分区数据分配给集群中的各个节点。
为创建RDD,可以从外部存储中读取数据,例如从Cassandra、Amazon简单存储服务(Amazon Simple Storage Service)、HDFS或其它Hadoop支持的输入数据格式中读取。也可以通过读取文件、数组或JSON格式的数据来创建RDD。另一方面,如果对于应用来说,数据是本地化的,此时你仅需要使用parallelize方法便可以将Spark的特性作用于相应数据,并通过Apache Spark集群对数据进行并行化分析。为验证这一点,我们使用Scala Spark Shell进行演示:
G. 金融需要 hadoop、spark 等这些大数据分析工具吗使用场景是怎样的
首先,金融业的涵盖非常之广,主要包括三大类:银行类、投资类和保险类。具体则很多:商业银行、投资银行、证券、保险、小贷公司、租赁等。而且随着时代和技术发展,还出现了各类新型金融机构,比如:消费贷、P2P等等。其次,金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。
而最近大火的UBI(Usage Based Insurance)更是将大数据技术的使用推向新高度。甚至通过在保险购买者的车辆上安装检测OBD数据的硬件设备来获取各项数据,从而对好司机和坏司机差别定价保费。
H. 如何助力Spark大数据分析
Kubernetes如何助力Spark大数据分析
概述
本文为大家介绍一种容器化的数据服务Spark + OSS on ACK,允许Spark分布式计算节点对阿里云OSS对象存储的直接访问。借助阿里云Kubernetes容器服务与阿里云OSS存储资源的深度整合,允许Spark分布式内存计算,机器学习集群对云上的大数据直接进行分析和保存结果。
先决条件
你已经通过阿里云容器服务创建了一个Kubernetes集群,详细步骤参见创建Kubernetes集群
从容器服务控制台创建一个Spark OSS实例
使用三次点击来创建一个1 master + 3 worker 的Spark OSS的实例
1 登录 https://cs.console.aliyun.com/
2 点击 “应用目录”
3 选择 “spark-oss”, 点击 “参数”
3.(可选)修改工作节点数目 Worker.Replicas: 3
6 点击 服务, 查看外部端点, 点击URL访问Spark集群
7 测试Spark集群
1.打开一个spark-shell
kubectl getpod | grep worker
spark-oss-online2-worker-57894f65d8-fmzjs 1/1 Running 0 44m
spark-oss-online2-worker-57894f65d8-mbsc4 1/1 Running 0 44m
spark-oss-online2-worker-57894f65d8-zhwr4 1/1 Running 0 44m
kubectl exec -itspark -oss-online2-worker-57894f65d8 -fmzjs--/opt/spark/bin/spark -shell--master spark: //spark-oss-online2-master:7077
I. Spark 对于生物大数据分析来讲有什么缺点和不足
在这里,谈谈如何让我们创建的词条快速通过网络的审核,同时也向新的一届选手传授点经验,少走些弯路。 一.围绕网络所要求的去编创词条。首先主题要明确,就如写作为一样不要偏题。行文要通顺,这点做到了就是符合网络所要求的可读性要强了。如我上一届编写的词条新竞争力 1.确定准确的词条。 2、 确定第一标题 。 3、确定第二标题。 先确定好这三部分,我们的目的是先通过,让显示出来后期再做补充完善。前期是简明扼要为主,文字尽量表达到位,精炼最好。二.尽量不要出现多个关键词重叠,避免广告嫌疑。网络有专门的审核网络的工作人员,这些人每天要面对成千上万条词条的海量审核工作,工作量可想而知,一般每条词条都是大体上看一遍觉得顺,而且没有觉得创建者故意堆砌关键词、放产品名称做广告,这类型的词条就极其容易通过。三.词条编辑好了,提交后期要善于投诉。这一点我相信很多人没有认真去做。据我们观察,一般无法通过的词条网络要么以词条可读性不强,要么就是有广告嫌疑为由拒绝,只要你稍微修改一下,到投诉,记住一定要积极去投诉,和他们的编辑保持一个良性的互动,一般两次之内一定能够通过审核并正常的显示了。当然通过了以后也要去回复一下他们。 希望我的观点能对您有帮助.