⑴ 国内有哪些数据分析和数据挖掘的牛人
数据分析的顶级牛人,是被各国顶级赌场拉黑名单的。
次一等的,是自己玩投放做点大家都会但都觉得不赚钱却只有他自己能闷声赚钱的。
再往下,股票证券的自动高频交易系统,一水的大数据。广告优化平台,类似芒果移动,mediav这样的,以及推荐平台 百分点这样的,靠数据吃饭的公司。
⑵ 最近学金融,好多知识看不懂啊::>_<:: 请结合大数据的理念对数据分析和数据挖掘能在金融市场的
首先是通过大数据可以分析客户的个人信息,收入,风险偏好等,可以推荐相应的金融产品,如果哪些年龄段和工作的人群适合基金,保险和其它有价证券;
其次是金融产品的开发上,主要有保险产品和一些其它产品,通过发病率,灾情概率等进行精算,开发出保险产品,一些其它的金融新产品也会涉及到数据分析;
再次是金融产品的定价及投资分析上,很多因素都会影响金融产品,如股票,期货,现货等,通过数据挖掘,找出其影响因素,进行价格分析。
大数据和数据挖掘主要有这几方面的应用,当然还有其它的方面,很多论述金融与数据分析的书中有很多的,可以进一步研究,还望采纳。
⑶ 股票的数据挖掘用什么算法最合适
写个贝叶斯分类算法
对文本进行分类
⑷ 股票数据挖掘的算法有那些最好给些应用的例子。
给我你的邮箱 我发给你
⑸ 股票市场搞数据挖掘,数据分析来炒股有没机会
有机会,而且机会不小,但是我等散户靠数据分析,可能自身实力差的太悬殊了。
硬件设备就不达标哦。
⑹ 什么是数据挖掘
所谓数据挖掘,是指从大量的数据中发现并抽取隐含的、未知的、有潜在应用价值的知识过程.数据挖掘的目的是为决策者提供有效的决策支持。
美国SAS软件研究所将数据挖掘定义为:“按照既定的业务目标,对大量的企业数据进行探索、揭示隐藏其中的规律性并进一步模型化的先进、有效的方法.”
⑺ “基于数据挖掘的股票交易分析--模型分析” 这个题目,是什么意思 哪位哥们,能给点具体解释么
很难写,主要牵涉到数据挖掘(软件)和股票交易两方面的专业。数据挖掘需要设计软件进行建模,而股票交易需要进行实证(博士论文都可以写了)。
建议:可以写基于统计挖掘的股票交易分析--模型分析,这样就简单多了,只需要在股票软件上得出一些统计数据,然后进行验证就可以了,可操作性强。
⑻ 什么叫数据挖掘
数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。
1. 数据挖掘能做什么?
1)数据挖掘能做以下六种不同事情(分析方法):
分类 (Classification)
估值(Estimation)
预言(Prediction)
相关性分组或关联规则(Affinity grouping or association rules)
聚集(Clustering)
描述和可视化(Des cription and Visualization)
2)数据挖掘分类
以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘
直接数据挖掘
目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以
理解成数据库中表的属性,即列)进行描述。
间接数据挖掘
目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系
。
分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘
3)各种分析方法的简介
分类 (Classification)
首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分
类模型,对于没有分类的数据进行分类。
例子:
a. 信用卡申请者,分类为低、中、高风险
b. 分配客户到预先定义的客户分片
注意: 类的个数是确定的,预先定义好的
估值(Estimation)
估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的
输出;分类的类别是确定数目的,估值的量是不确定的。
例子:
a. 根据购买模式,估计一个家庭的孩子个数
b. 根据购买模式,估计一个家庭的收入
c. 估计real estate的价值
一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的
连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运
用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。
预言(Prediction)
通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用
于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。
预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时
间后,才知道预言准确性是多少。
相关性分组或关联规则(Affinity grouping or association rules)
决定哪些事情将一起发生。
例子:
a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)
b. 客户在购买A后,隔一段时间,会购买B (序列分析)
聚集(Clustering)
聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先
定义好的类,不需要训练集。
例子:
a. 一些特定症状的聚集可能预示了一个特定的疾病
b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。
描述和可视化(Des cription and Visualization)
是对数据挖掘结果的表示方式。
2.数据挖掘的商业背景
数据挖掘首先是需要商业环境中收集了大量的数据,然后要求挖掘的知识是有价值的。有
价值对商业而言,不外乎三种情况:降低开销;提高收入;增加股票价格。
1)数据挖掘作为研究工具 (Research)
2)数据挖掘提高过程控制(Process Improvement)
3)数据挖掘作为市场营销工具(Marketing)
4)数据挖掘作为客户关系管理CRM工具(Customer Relationship Management)
3.数据挖掘的技术背景
1)数据挖掘技术包括三个主要部分:算法和技术;数据;建模能力
2)数据挖掘和机器学习(Machine Learning)
机器学习是计算机科学和人工智能AI发展的产物
机器学习分为两种学习方式:自组织学习(如神经网络);从例子中归纳出规则(如决策树)
数据挖掘由来
数据挖掘是八十年代,投资AI研究项目失败后,AI转入实际应用时提出的。它是一个新兴
的,面向商业应用的AI研究。选择数据挖掘这一术语,表明了与统计、精算、长期从事预
言模型的经济学家之间没有技术的重叠。
3)数据挖掘和统计
统计也开始支持数据挖掘。统计本包括预言算法(回归)、抽样、基于经验的设计等
4)数据挖掘和决策支持系统
数据仓库
OLAP(联机分析处理)、Data Mart(数据集市)、多维数据库
决策支持工具融合
将数据仓库、OLAP,数据挖掘融合在一起,构成企业决策分析环境。
4. 数据挖掘的社会背景
数据挖掘与个人预言:数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上,客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中神秘,它不可能是完全正确的。
5.数据挖掘技术实现
在技术上可以根据它的工作过程分为:数据的抽取、数据的存储和管理、数据的展现等关键技术。
1) 数据的抽取
数据的抽取是数据进入仓库的入口。由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入数据仓库。数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等几个方面的处理。在数据抽取方面,未来的技术发展将集中在系统功能集成化方面,以适应数据仓库本身或数据源的变化,使系统更便于管理和维护。
2) 数据的存储和管理
数据仓库的组织管理方式决定了它有别于传统数据库的特性,也决定了其对外部数据的表现形式。数据仓库管理所涉及的数据量比传统事务处理大得多,且随时间的推移而快速累积。在数据仓库的数据存储和管理中需要解决的是如何管理大量的数据、如何并行处理大量的数据、如何优化查询等。目前,许多数据库厂家提供的技术解决方案是扩展关系型数据库的功能,将普通关系数据库改造成适合担当数据仓库的服务器。
3) 数据的展现
在数据展现方面主要的方式有:
查询:实现预定义查询、动态查询、OLAP查询与决策支持智能查询;报表:产生关系数据表格、复杂表格、OLAP表格、报告以及各种综合报表;可视化:用易于理解的点线图、直方图、饼图、网状图、交互式可视化、动态模拟、计算机动画技术表现复杂数据及其相互关系;统计:进行平均值、最大值、最小值、期望、方差、汇总、排序等各种统计分析;挖掘:利用数据挖掘等方法,从数据中得到关于数据关系和模式的知识。
6.数据挖掘与数据仓库融合发展
数据挖掘和数据仓库的协同工作,一方面,可以迎合和简化数据挖掘过程中的重要步骤,提高数据挖掘的效率和能力,确保数据挖掘中数据来源的广泛性和完整性。另一方面,数据挖掘技术已经成为数据仓库应用中极为重要和相对独立的方面和工具。
数据挖掘和数据仓库是融合与互动发展的,其学术研究价值和应用研究前景将是令人振奋的。它是数据挖掘专家、数据仓库技术人员和行业专家共同努力的成果,更是广大渴望从数据库“奴隶”到数据库“主人”转变的企业最终用户的通途。
⑼ 如何获得股票行情数据,自己编程处理进行数据挖掘
行情数据可到通达信或者同花顺观看
⑽ 现在最好用的免费股票分析软件是哪
你好( ^_^)/感谢你的邀请!
很多人问:免费的股票分析软件真的好用吗?答案是:市面上有好用的!只是你没发现!
简单点的,同花顺旗下投资账本APP,可以导入股票基金、定期存款,数据实时同步,分析近2年收益盈亏。
另外,分析股票走势的方法很多,如下就常用的一些方法列举出来:
技术分析:
1.看K线图 股价是处于上升通道还是下跌通道?上升通道可以关注,但不要盲目追高,下跌通道不要碰。
2.看金叉死叉 当短期均线上穿中期或者长期均线时,形成最佳买点即金叉;短期均线下穿中期或者长期均线时,形成最佳卖点即死叉。这时再卖已有些下跌,因炒股软件里面的指 标有些滞后。
3.看量价关系 没放量股价在微涨,说明主力在布局;在上升通道中,明显放量但股价微跌,此时主力在盘整打压散户;放量逐渐加剧,此时拉高,主力快出货了,不要盲目追涨。 后面剧烈放量股价并未涨就是主力悄悄出货了。
基本面分析:
1.看公司有没有重组消息?重组包含很多方面。
2.看公司是否有关联交易?
3.看公司前期是否有亏损?
4.看上市公司产品是否属于国家政策扶持还是打压的?
5.看公司的盈利能力。 只要把以上的方法真正撑握了,你就是一个稳健的股票玩家了!但要注意炒股的心态!做短线,中线,长线完全看你个人的资金量了!
投资者炒股得掌握好一定的经验和技巧,这样才能分析出好的股票,平时得多看,多学,多做模拟盘,多和股坛老将们交流。吸收他们的经验。
如果一个股民经常亏损,我建议他要反思,需要总结一套自己炒股盈利的方法,这样炒股相对来说要稳妥得多,我现在也一直都在追踪同花顺投资账本里的高手学习,感觉还是受益良多,愿能帮助到你,祝投资愉快!