① 通俗并详细解释一下卡尔曼滤波
卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。
② 关于卡尔曼滤波做预测的问题
你是要做实际问题还是做仿真。对于一般的非机动目标,直接使用离散的常速CV模型作为状态转移矩阵,噪声在速度引入。观测矩阵要按实际情况,如果是做仿真,可以直接使用单位矩阵
③ 卡尔曼滤波的基本原理和算法
卡尔曼滤波的原理用几何方法来解释。这时,~X和~Z矩阵中的每个元素应看做向量空间中的一个向量而不再是一个单纯的数。这个向量空间(统计测试空间)可以看成无穷多维的,每一个维对应一个可能的状态。~X和~Z矩阵中的每个元素向量都是由所有可能的状态按照各自出现的概率组合而成(在测量之前,~X和~Z 的实际值都是不可知的)。~X和~Z中的每个元素向量都应是0均值的,与自己的内积就是他们的协方差矩阵。无法给出~X和~Z中每个元素向量的具体表达,但通过协方差矩阵就可以知道所有元素向量的模长,以及相互之间的夹角(从内积计算)。
为了方便用几何方法解释,假设状态变量X是一个1行1列的矩阵(即只有一个待测状态量),而量测变量Z是一个2行1列的矩阵(即有两个测量仪器,共同测量同一个状态量X),也就是说,m=1,n=2。矩阵X中只有X[1]一项,矩阵Z中有Z[1]和Z[2]两项。Kg此时应是一个1行2列的矩阵,两个元素分别记作Kg1 和 Kg2 。H和V此时应是一个2行1列的矩阵。
参考资料:
http://blog.csdn.net/newthinker_wei/article/details/11768443
股票投资是随市场变化波动的,涨或跌都是有可能的。
应答时间:2020-08-06,最新业务变化请以平安银行官网公布为准。
[平安车主贷] 有车就能贷,最高50万
https://b.pingan.com.cn/station/activity/loan/qr-carloan/loantrust.html?source=sa0000632&outerSource=bdzdhhr_zscd&outerid=ou0000250&cid=bdzdhhr_zscd&downapp_id=AM001000065
⑤ 卡尔曼滤波及其实时应用怎么样,好不好
卡尔曼滤波可以说是万能的,只要你有目标的运动知识,就可以使得你的观测更加精确,目前目标跟踪,图像还原都用的kalman filter
⑥ 如何通俗并尽可能详细解释卡尔曼滤波
真实值是不可接近的,只能依据最小均方误差使估计值尽可能的靠近真实值。 下面这段文字对卡尔曼的解释很形象,看看吧。 为了可以更加容易的理解卡尔曼滤波器,这里应用形象的描述方法讲解,不像参考书那样罗列一大堆的数学公式和数学符号。
⑦ 卡尔曼滤波如何预测
很多人将卡尔曼滤波用在股票啊,流量啊的上面,其实不是很科学,卡尔曼滤波运用的是‘惯性思维’,在普通的观测上加入了物体的运动有惯性,加速度很难突变的条件增加准确度。而客流量这种东西并没有惯性,除非你有相关模型,否则不是很适用卡尔曼滤波。PS:如果你做的是对于一个目标有多个观测数据,那么也是可以用卡尔曼滤波的,不过不需要使用状态转移矩阵了。对于一般的非机动目标,直接使用离散的常速CV模型作为状态转移矩阵,噪声在速度引入。观测矩阵要按实际情况,如果是做仿真,可以直接使用单位矩阵
卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。
数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用。
状态估计是卡尔曼滤波的重要组成部分。一般来说,根据观测数据对随机量进行定量推断就是估计问题,特别是对动态行为的状态估计,它能实现实时运行状态的估计和预测功能。比如对飞行器状态估计。状态估计对于了解和控制一个系统具有重要意义,所应用的方法属于统计学中的估计理论。最常用的是最小二乘估计,线性最小方差估计、最小方差估计、递推最小二乘估计等。其他如风险准则的贝叶斯估计、最大似然估计、随机逼近等方法也都有应用。
受噪声干扰的状态量是个随机量,不可能测得精确值,但可对它进行一系列观测,并依据一组观测值,按某种统计观点对它进行估计。使估计值尽可能准确地接近真实值,这就是最优估计。真实值与估计值之差称为估计误差。若估计值的数学期望与真实值相等,这种估计称为无偏估计。卡尔曼提出的递推最优估计理论,采用状态空间描述法,在算法采用递推形式,卡尔曼滤波能处理多维和非平稳的随机过程。
⑧ 卡尔曼滤波理解问题
状态转移方程(我习惯上叫它状态空间)是一个实际被测对象的数学模型。这是进行卡尔曼滤波的前提条件。(插一句,对于传统的卡尔曼滤波,这个状态空间必须是线性的,对于非线性系统请参看Sigma-point Kalmanfilter)卡尔曼滤波简单的说就是通过这个状态空间算一个预测值,然后与实际测量值比较,并修正之。
嘿嘿,这个问题不太好解释,如果你还有问题,可以发邮件问我,[email protected]
⑨ 什么是卡尔曼滤波
信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。
维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。
卡尔曼滤波在数学上是一种统计估算方法,通过处理一系列带有误差的实际量测数据而得到的物理参数的最佳估算。例如在气象应用上,根据滤波的基本思想,利用前一时刻预报误差的反馈信息及时修正预报方程,以提高下一时刻预报精度。作温度预报一般只需要连续两个月的资料即可建立方程和递推关系。
⑩ 卡尔曼滤波算法的发展历史如何
全球定位系统(GPS)是新一代的精密卫星导航定位系统。由于其全球性、全天候以及连续实时三维定位等特点,在军事和民用领域得到了广泛的发展。近年来,随着科学技术的发展,GPS导航和定位技术已向高精度、高动态的方向发展。但是由于GPS定位包含许多误差源,尤其是测量随机误差和卫星的几何位置误差,使定位精度受到影响。利用传统的方法很难消除。而GPS动态滤波是消除GPS定位随机误差的重要方法,即利用特定的滤波方法消除各种随机误差,从而提高GPS导航定位精度。 经典的最优滤波包括:Wiener滤波和Kalman滤波。由于Wiener滤波采用频域法,作用受到限制;而Kalman滤波采用时域状态空间法,适合于多变量系统和时变系统及非平稳随机过程,且由于其递推特点容易在计算机上实现,因此得到了广泛的应用。为此,本文对Kalman滤波方法进行了深入的研究,并取得了一些成果。 本文首先概述了GPS的组成、应用及最新动态。在此基础上介绍了GPS的导航定位原理,给出了卫星可见性算法、选星算法及定位算法。然后介绍了卡尔曼滤波的基本原理,在此基础上对动态用户的飞行轨迹进行了仿真,对“singer”模型下的8状态和11状态卡尔曼滤波算法进行了仿真分析,同时对“当前”统计模型下11状态卡尔曼滤波算法进行了仿真分析,并对滤波前后的定位精度进行了比较。在此基础上,就如何提高滤波器的动态性能作者提出了改进算法,即自适应卡尔曼滤波算法、带渐消因子的优化算法及改进的优化算法,并分别进行了仿真分析。最后作者将卡尔曼滤波算法分别应用于GPS/DR和GPS/INS组合导航定位系统中,并分别对这两种系统进行了建模和仿真分析,取得了较理想的结果。 本文的研究工作,对改进传统的滤波方法有一定的参考和应用价值,并对卡尔曼滤波方法在提高GPS动态导航定位精度方面的应用起到积极的促进作用。