当前位置:首页 » 分析预测 » 股票数据如何做时间序列分析法
扩展阅读
买黄金跟买股票那个靠谱 2025-06-30 03:24:58
南方水泥招采平台 2025-06-30 03:05:14

股票数据如何做时间序列分析法

发布时间: 2021-08-19 07:07:16

A. 股票数据分析方法

股票价格的涨跌,简单来说,供求决定价格,买的人多价格就涨,卖的人多价格就跌。做成买卖不平行的原因是多方面的,影响股市的政策面、基本面、技术面、资金面、消息面等,是利空还是利多,升多了会有所调整,跌多了也会出现反弹,这是不变的规律。

B. 如何用R 语言 建立 股票价格的时间序列

在下想用R语言对股票价格进行时间序列分析。
问题出在第一步,如何将股票价格转换为时间序列。
我想用的语句是 pri <- ts (data, start=(), frequency= )
但是我不知道frequency 项该如何填?
因为股票的交易日是一周五天的。 那么这个frequency 该如何设置呢?
我知道通常frequency= 12 为月度数据,frequency= 4 为季度数据,frequency= 1 为年度数据 但日数据怎么写我就不知道了

初学R语言,还望各位大侠多多帮助。

C. 时间序列分析的基本步骤

时间序列建模基本步骤是:
①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。
②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。
③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。

D. 如何用excel做时间序列分析法

如下实例用季节性预测求2005年各季度用电量,把数据输入到excel中

输入原始数据,计算三点平滑值,消除季节变动和不规则变动,保留长期趋势。
计算方法:2136=(435+2217+3756)/3
1122.33=(2217+3756+394)/3........以此类推。

计算季节性指标:季节性指标=用电量÷三点滑动值。

计算季节性指标校正值:
校正系数=4÷季节性指标之和=4÷5.525=0.72
校正后季节性指标=季节性指标*校正系数

求预测模型:求出S1和s2同时也利用公式算出at和bt,α取0.2。
计算公式可参照下列表格也可自行网络。

求预测模型为:
求预测值。以2004年第4季度为基期,套用公式计算预测2005年各季度的旅游人数
第一季度:y=(6433.89+486.61*1)*0.42=2906.61
第二季度:y=(6433.89+3486.61*2)*0.99=13273.04
第三季度:y=(6433.89+3486.61*3)*2.15=36321.50
第四季度:y=(6433.89+3486.61*4)*0.44 =8967.35
由此可以计算出2005年全年度的游客人数预测值为:
y=四个季度相加=61468.49 (10的四次方千瓦)

E. 怎样对数据进行时间序列分析,请问有哪些要点

按时间排序,您要做什么表

F. 怎样用时间序列预测股票走势

庄家分析方法:庄家炒股票也要获利。同样是买、卖的差价获利。与散户不同的是,他可以控制股票的走势和价格,也就是说散户获利是靠期待股价上涨,而庄家则是自己拉动股价上涨。 所以,庄家炒作包括四部分:建仓、拉高、整理、出货。所谓的“洗盘”,多为吃货。一般是吃、拉、出三部曲。
庄家建仓一般要选择股价较低时,而且希望越低越好,他恨不得砸两个板再买。所以,“拉高吃货”之类,以及股价已经创新高还说是吃货,等等,千万别信。吃货结束之后,一般会有一个急速的拉升过程。一旦一只股票开始大涨,它就脱离了安全区,随时都有出货的可能。所以我的中线推荐一律是在低位。 当庄家认为出货时机未到时,就需要在高位进行横盘整理,一般是打个差价,散户容易误认为出货。 庄家出货一般要做头部,头部的特点是成交量大,振幅大,除非赶上大盘做头,一般个股的头部时间都在1个月以上。
庄家分析方法是一种综合分析方法,不能单看图形,也要参考技术,还得注意股票的基本面和一些外围情况。

G. 应用时间序列分析有哪几种方法

时间序列分析常用的方法:趋势拟合法和平滑法。

1、趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法。包括线性拟合和非线性拟合。

线性拟合的使用场合为长期趋势呈现出线形特征的场合。参数估计方法为最小二乘估计。

非线性拟合的使用场合为长期趋势呈现出非线形特征的场合。其参数估计的思想是把能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计。实在不能转换成线性的,就用迭代法进行参数估计。

2、平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律 。

(7)股票数据如何做时间序列分析法扩展阅读

时间序列分析的主要用途:

1、系统描述

根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。

2、系统分析

当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。

3、预测未来

一般用ARMA模型拟合时间序列,预测该时间序列未来值。

4、决策和控制

根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

H. 金融学中股票的时间序列用哪个数学模型分析

股票的数学模型只是技术分析之一,我们应该放弃以往重技术轻其他分析的方式,把重心放在股票基本面,消息面上。