① python使用plotly生成了多个离线图表,如何将他们合并成一个html做展示
本人在使用groovy爬取了全国3000+城市的历史天气之后,需要把每个城市的历史天气都绘制一张Time Series表格,用来反映各地的最高温最低温温差的变化曲线。这里遇到了一个问题,每次plotly绘制完图标总会调起系统浏览器打开呈现,一旦我批量生成N多张表格时,电脑就会卡死了。在使用中文作为文件名的时候遇到了一个错误,这个错误刚好能巧妙解决这个问题。在不同编码格式的字符拼接时文件路径时,会报错,报错内容如下:
'ascii' codec can't encode characters in position 69-70: ordinal not in range(128)
然后程序停止运行,但是文件已经生成了。在做了异常处理后,刚好能满足需求。关于python2.7的编码问题,并不是很了解为什么出这个错。有大神了解的可以分享一下。
python部分的代码如下:
#!/usr/bin/python
# coding=utf-8
from first.date import DatePlot
import os
from second.MysqlFission import MysqlFission
import shutil
import time
class Fission:
x = []
y = []
z = []
d = []
def __init__(self):
print "欢迎使用fission类!"
# def __init__(self,x,y,z,d):
# def __init__(self,name):
# self.name = name
# print "欢迎使用fission类!"
def getData(self, name):
size = 0;
with open("/Users/Vicky/Documents/workspace/source_api/long/" + name + ".log") as apidata:
for i in apidata:
data = i.split(" ")[0].split("|")[0]
low = i.split(" ")[0].split("|")[1]
high = i.split(" ")[0].split("|")[2]
diff = int(high) - int(low)
self.x.append(data)
self.y.append(low)
self.z.append(high)
self.d.append(diff)
size += 1;
def getDataMarkLine(self, name):
with open("/Users/Vicky/Documents/workspace/source_api/long/" + name + ".log") as apidata:
for i in apidata:
data = i.split(" ")[0].split("|")
day = data[0]
time = float(data[1])
self.x.append(day)
self.y.append(time)
return [self.x, self.y]
if __name__ == "__main__":
names = []
for name in names:
name = u"三沙"
sql = MysqlFission()
sql.getWeather(name)
fission = Fission()
fission.x = []
fission.y = []
fission.z = []
fission.d = []
fission.getData(name)
try:
DatePlot.MakePlotTwo(fission.x, name, high=fission.y, low=fission.z, diff=fission.d)
except BaseException:
print 2
shutil.file(name + ".html", "/Users/Vicky/Desktop/w/" + name + ".html")
os.remove(name + ".html")
time.sleep(5)
下面是北京市的效果图:
② 有哪些值得推荐的数据可视化工具
1.plotly 2.R ggplot23.无需编程语言的工具(7个)4.基于JavaScript实现的工具(8个)5.基于其他语言的工具(5个)6.地图数据可视化工具(7个)7.金融(股票)数据可视化工具(2个)8.时间轴数据可视化工具(2个)9.函数与公式数据可视化工具(2个)10.其他(3个)共计37个工具
③ 用plotly画图报错 NameError :name 'go' is not defined
原因:go函数未被导入和命名,这是plotly里的基础作图函数(Basic Bar Chart with plotly.graph_objects)导入即可。
如下操作即可解决:
import plotly.graph_objects as go
详见链接
网页链接
④ python plotly 怎么使用
Plot.ly是一个用于做分析和可视化的在线工具,Plotly与pandas可以无缝地集成,可以做出很多非常丰富,互动的图表,并且文档非常健全,创建条形图相对简单,另外申请了API密钥后,可以一键将统计图形同步到云端。
下面是一个用Ploty画直方图的例子,我参考的是这篇文章http://www.dcharm.com/?p=599
importplotly.plotlyaspy
importpandasaspd
fromplotly.graph_objsimport*
fromplotly.offlineimportplot
budget=pd.read_csv("mn-budget-detail-2014.csv")
budget=budget.sort('amount',ascending=False)[:10]
data=Data([
Bar(
x=budget["detail"],
y=budget["amount"]
)
])
layout=Layout(
title='2014MNCapitalBudget',
font=Font(
family='Raleway,sans-serif'
),
showlegend=False,
xaxis=XAxis(
tickangle=-45
),
bargap=0.05
)
fig=Figure(data=data,layout=layout)
⑤ python的plotly的这个show_link=False是什么意思
show_link:bool型,用于调整输出的图像是否在右下角带有plotly的标记
False 不显示
True 显示
⑥ 求助Python可视化库plotly_express
应该是你那个函数获取数据没有成功,从原来的例子来看,他那些寿命和gdp的数据应该是存在网上,然后人家的函数可以直接获取那些数据。从你这个运行结果来看,这些函数应该是访问不到对应的数据,所以执行也没有结果和显示。
⑦ 有没有交互的图表制作工具推荐
1.plotly 2.R ggplot23.无需编程语言的工具(7个)4.基于JavaScript实现的工具(8个)5.基于其他语言的工具(5个)6.地图数据可视化工具(7个)7.金融(股票)数据可视化工具(2个)8.时间轴数据可视化工具(2个)9.函数与公式数据可视化工具(2个)10.其他(3个)
⑧ 常用的python库有哪些
1.Matplotlib
Matplotlib是一个用于创立二维图和图形的底层库。藉由它的协助,你可以构建各种不同的图标,从直方图和散点图到费笛卡尔坐标图。matplotlib可以与许多盛行的绘图库结合运用。
2.Seaborn
Seaborn本质上是一个根据matplotlib库的高级API。它包括更适合处理图表的默认设置。此外,还有丰厚的可视化库,包括一些杂乱类型,如时刻序列、联合分布图(jointplots)和小提琴图(violindiagrams)。
3.Plotly
Plotly是一个盛行的库,它可以让你轻松构建杂乱的图形。该软件包适用于交互式Web运用程,可完成轮廓图、三元图和三维图等视觉效果
4.Bokeh
Bokeh库运用JavaScript小部件在浏览器中创立交互式和可缩放的可视化。该库提供了多种图表调集,样式可能性(stylingpossibilities),链接图、增加小部件和界说回调等方式的交互才能,以及许多更有用的特性。
5.Pydot
Pydot是用纯Python编写的Graphviz接口,经常用于生成杂乱的定向图和无向图,可以显现图形的结构,对于构建神经网络和根据决策树的算法时十分有效。
6.pyecharts
是根据网络开源的Echarts而开发的Python可视化东西。
pyecharts功用十分强大,支撑多达400+地图;支撑JupyterNotebook、JupyterLab;可以轻松集成至Flask,Sanic,Django等干流Web结构。
关于常用的python库有哪些,环球青藤小编就和大家分享到这里了,学习是没有尽头的,学习一项技能更是受益终身,因此,只要肯努力学,什么时候开始都不晚。如若你还想继续了解关于python编程的素材及学习方法等内容,可以点击本站其他文章学习。
⑨ Python中数据可视化的两个库!
1、Matplotlib
Matplotlib是最全面的Python数据可视化库。
有人认为Matplotlib的界面很难看,但笔者认为,作为最基础的Python数据可视化库,Matplotlib能为使用者的可视化目标提供最大的可能性。
使用JavaScript的开发者们也有各自偏好的可视化库,但当所处理的任务中涉及大量不被高级库所支持的定制功能时,开发者们就必须用到D3.js。Matplotlib也是如此。
2、Plotly
虽然坚信要进行数据可视化,就必须得掌握Matplotlib,但大多数情况下读者更愿意使用Plotly,因为使用Plotly只需要写最少的代码就能得出最多彩缤纷的图像。
无论是想构造一张3D表面图,或是一张基于地图的散点图,又或是一张交互性动画图,Plotly都能在最短的时间内满足要求。
Plotly还提供一个表格工作室,使用者可以将自己的可视化上传到一个在线存储库中以便未来进行编辑。
更多Python知识,请关注Python视频教程!
⑩ 如何让python可视化
简介
在 Python 中,将数据可视化有多种选择,正是因为这种多样性,何时选用何种方案才变得极具挑战性。本文包含了一些较为流行的工具以及如何使用它们来创建简单的条形图,我将使用下面几种工具来完成绘图示例:
Pandas
Seaborn
ggplot
Bokeh
pygal
Plotly
在示例中,我将使用 pandas 处理数据并将数据可视化。大多数案例中,使用上述工具时无需结合 pandas,但我认为 pandas 与可视化工具结合是非常普遍的现象,所以以这种方式开启本文是很棒的。
什么是 Matplotlib?
Matplotlib是众多 Python 可视化包的鼻祖。其功能非常强大,同时也非常复杂。你可以使用 Matplotlib 去做任何你想做的事情,但是想要搞明白却并非易事。我不打算展示原生的 Matplotlib 例子,因为很多工具(特别是 Pandas 和 Seaborn)是基于 Matplotlib 的轻量级封装,如果你想了解更多关于 Matplotlib 的东西,在我的这篇文章—《simple graphing》中有几个例子可供参考。
Matplotlib 令我最不满的地方是它花费太多工作来获得目视合理的图表,但是在本文的某些示例中,我发现无需太多代码就可以轻松获得漂亮的可视化图表。关于 Matplotlib 冗长特点的示例,可以参考这篇文章《ggplot》中的平面图示例。
方法论
简要说一下本文的方法论。我坚信只要读者开始阅读本文,他们将会指出使用这些工具的更好方法。我的目标并非在每个例子中创造出完全相同的图表,而是花费大致相同的时间探索方法,从而在每个例子中以大体相同的方法将数据可视化。
在这个过程中,我所面临的最大挑战是格式化 x 轴和 y 轴以及基于某些大的标签让数据看起来合理,弄明白每种工具是如何格式化数据的也花费了我不少精力,我搞懂这些之后,剩余的部分就相对简单了。
另外还需要注意的一点是,条形图可能是制作起来相对更简单的图表,使用这些工具可以制作出多种类型的图表,但是我的示例更加侧重的是简易的格式化,而不是创新式的可视化。另外,由于标签众多,导致一些图表占据了很多空间,所以我就擅自移除了它们,以保证文章长度可控。最后,我又调整了图片尺寸,所以图片的任何模糊现象都是缩放导致的问题,并不代表真实图像的质量。
最后一点,我以一种尝试使用 Excel 另外一款替代品的心态来实现示例。我认为我的示例在报告、展示、邮件或者静态网页中都更具说服力。如果你正在评估用于实时可视化数据的工具,亦或是通过其他途径去分享,那么其中的部分工具会提供很多我还未涉猎到的功能。
数据集
之前的文章描述了我们要处理的数据,我从每一类中抽取了更深一层的样例,并选用了更详细的元素。这份数据集包含了125行,但是为了保持简洁,我只选用了前10行,完整的数据集可以在这里找到。