⑴ 聚类分析在股票板块中的应用 急需此题论文!!
请先看看下面这教程,看能否找到你要的答案,不明再问我。。
www.fjmu.e.cn
⑵ 大数据、云计算、人工智能之间有什么样的关系
云计算、大数据、人工智能这三者的发展不能分开来讲,三者是有着紧密联系的,互相联系,互相依托的,脱离了谁都不能更好的发展,让我们具体来看一下!
一、大数据
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
数据每天都在产生,各行各业都有,数据量也是相当之大,但如何整合数据,清洗数据,然后实现数据价值,这才是当今大数据行业的研究重点。大数据最后要实现的是数据超融合,应用到应用场景,大数据的价值才会体现出来。
人工智能就是大数据应用的体现。
二、云计算
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
对云计算的定义有多种说法。对于到底什么是云计算,至少可以找到100种解释。现阶段广为接受的是美国国家标准与技术研究院(NIST)定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问, 进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。
说白了,云计算计算的是什么?云存储存储的是什么?还是大数据!所以离开大数据谈云计算,离开云计算谈大数据,这都是不科学的。
三、人工智能
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种复杂工作的理解是不同的。
人工智能其实就是大数据、云计算的应用场景。
现在已经比较火热的VR,沉浸式体验,就是依赖与大数据与云计算,让用户能够由更加真切的体验,并且VR技术是可以使用到各行各业的。
人工智能不同于传统的机器人,传统机器人只是代替人类做一些已经输入好的指令工作,而人工智能则包含了机器学习,从被动到主动,从模式化实行指令,到自主判断根据情况实行不同的指令,这就是区别。
大数据的概念在前几年已经炒得火热,但是也就是近两年才开始慢慢落地,依赖于云计算的发展,以及人们对人工智能的预期。
⑶ 量化投资—策略与技术的作品目录
《量化投资—策略与技术》
策略篇
第 1章 量化投资概念
1.1 什么是量化投资 2
1.1.1 量化投资定义 2
1.1.2 量化投资理解误区 3
1.2 量化投资与传统投资比较 6
1.2.1 传统投资策略的缺点 6
1.2.2 量化投资策略的优势 7
1.2.3 量化投资与传统投资策略的比较 8
1.3 量化投资历史 10
1.3.1 量化投资理论发展 10
1.3.2 海外量化基金的发展 12
1.3.3 量化投资在中国 15
1.4 量化投资主要内容 16
1.5 量化投资主要方法 21
.第 2章 量化选股 25
2.1 多因子 26
2.1.1 基本概念 27
2.1.2 策略模型 27
2.1.3 实证案例:多因子选股模型 30
2.2 风格轮动 35
2.2.1 基本概念 35
2.2.2 盈利预期生命周期模型 38
2.2.3 策略模型 40
2.2.4 实证案例:中信标普风格 41
2.2.5 实证案例:大小盘风格 44
2.3 行业轮动 47
2.3.1 基本概念 47
2.3.2 m2行业轮动策略 50
2.3.3 市场情绪轮动策略 52
2.4 资金流 56
2.4.1 基本概念 56
2.4.2 策略模型 59
2.4.3 实证案例:资金流选股策略 60
2.5 动量反转 63
2.5.1 基本概念 63
2.5.2 策略模型 67
2.5.3 实证案例:动量选股策略和反转选股策略 70
2.6 一致预期 73
2.6.1 基本概念 74
2.6.2 策略模型 76
2.6.3 实证案例:一致预期模型案例 78
2.7 趋势追踪 84
2.7.1 基本概念 84
2.7.2 策略模型 86
2.7.3 实证案例:趋势追踪选股模型 92
2.8 筹码选股 94
2.8.1 基本概念 95
2.8.2 策略模型 97
2.8.3 实证案例:筹码选股模型 99
2.9 业绩评价 104
2.9.1 收益率指标 104
2.9.2 风险度指标 105
第 3章 量化择时 111
3.1 趋势追踪 112
3.1.1 基本概念 112
3.1.2 传统趋势指标 113
3.1.3 自适应均线 121
3.2 市场情绪 125
3.2.1 基本概念 126
3.2.2 情绪指数 128
3.2.3 实证案例:情绪指标择时策略 129
3.3 有效资金 133
3.3.1 基本概念 133
3.3.2 策略模型 134
3.3.3 实证案例:有效资金择时模型 137
3.4 牛熊线 141
3.4.1 基本概念 141
3.4.2 策略模型 143
3.4.3 实证案例:牛熊线择时模型 144
3.5 husrt指数 146
3.5.1 基本概念 146
3.5.2 策略模型 148
3.5.3 实证案例 149
3.6 支持向量机 152
3.6.1 基本概念 152
3.6.2 策略模型 153
3.6.3 实证案例:svm择时模型 155
3.7 swarch模型 160
3.7.1 基本概念 160
3.7.2 策略模型 161
3.7.3 实证案例:swarch模型 164
3.8 异常指标 168
3.8.1 市场噪声 168
3.8.2 行业集中度 170
3.8.3 兴登堡凶兆 172
第 4章 股指期货套利 180
4.1 基本概念 181
4.1.1 套利介绍 181
4.1.2 套利策略 183
4.2 期现套利 185
4.2.1 定价模型 185
4.2.2 现货指数复制 186
4.2.3 正向套利案例 190
4.2.4 结算日套利 192
4.3 跨期套利 195
4.3.1 跨期套利原理 195
4.3.2 无套利区间 196
4.3.3 跨期套利触发和终止 197
4.3.4 实证案例:跨期套利策略 199
4.3.5 主要套利机会 200
4.4 冲击成本 203
4.4.1 主要指标 204
4.4.2 实证案例:冲击成本 205
4.5 保证金管理 208
4.5.1 var方法 208
4.5.2 var计算方法 209
4.5.3 实证案例 211
第 5章 商品期货套利 214
5.1 基本概念 215
5.1.1 套利的条件 216
5.1.2 套利基本模式 217
5.1.3 套利准备工作 219
5.1.4 常见套利组合 221
5.2 期现套利 225
5.2.1 基本原理 225
5.2.2 操作流程 226
5.2.3 增值税风险 230
5.3 跨期套利 231
5.3.1 套利策略 231
5.3.2 实证案例:pvc跨期套利策略 233
5.4 跨市场套利 234
5.4.1 套利策略 234
5.4.2 实证案例:伦铜—沪铜跨市场套利 235
5.5 跨品种套利 236
5.5.1 套利策略 237
5.5.2 实证案例 238
5.6 非常状态处理 240
第 6章 统计套利 242
6.1 基本概念 243
6.1.1 统计套利定义 243
6.1.2 配对交易 244
6.2 配对交易 247
6.2.1 协整策略 247
6.2.2 主成分策略 254
6.2.3 绩效评估 256
6.2.4 实证案例:配对交易 258
6.3 股指套利 261
6.3.1 行业指数套利 261
6.3.2 国家指数套利 263
6.3.3 洲域指数套利 264
6.3.4 全球指数套利 266
6.4 融券套利 267
6.4.1 股票—融券套利 267
6.4.2 可转债—融券套利 268
6.4.3 股指期货—融券套利 269
6.4.4 封闭式基金—融券套利 271
6.5 外汇套利 272
6.5.1 利差套利 273
6.5.2 货币对套利 275
第 7章 期权套利 277
7.1 基本概念 278
7.1.1 期权介绍 278
7.1.2 期权交易 279
7.1.3 牛熊证 280
7.2 股票/期权套利 283
7.2.1 股票—股票期权套利 283
7.2.2 股票—指数期权套利 284
7.3 转换套利 285
7.3.1 转换套利 285
7.3.2 反向转换套利 287
7.4 跨式套利 288
7.4.1 买入跨式套利 289
7.4.2 卖出跨式套利 291
7.5 宽跨式套利 293
7.5.1 买入宽跨式套利 293
7.5.2 卖出宽跨式套利 294
7.6 蝶式套利 296
7.6.1 买入蝶式套利 296
7.6.2 卖出蝶式套利 298
7.7 飞鹰式套利 299
7.7.1 买入飞鹰式套利 300
7.7.2 卖出飞鹰式套利 301
第 8章 算法交易 304
8.1 基本概念 305
8.1.1 算法交易定义 305
8.1.2 算法交易分类 306
8.1.3 算法交易设计 308
8.2 被动交易算法 309
8.2.1 冲击成本 310
8.2.2 等待风险 312
8.2.3 常用被动型交易策略 314
8.3 vwap算法 316
8.3.1 标准vwap算法 316
8.3.2 改进型vwap算法 319
第 9章 其他策略 323
9.1 事件套利 324
9.1.1 并购套利策略 324
9.1.2 定向增发套利 325
9.1.3 套利重仓停牌股票的投资组合 326
9.1.4 封闭式投资组合套利 327
9.2 etf套利 328
9.2.1 基本概念 328
9.2.2 无风险套利 330
9.2.3 其他套利 334
9.3 lof套利 335
9.3.1 基本概念 335
9.3.2 模型策略 336
9.3.3 实证案例:lof 套利 337
9.4 高频交易 341
9.4.1 流动性回扣交易 341
9.4.2 猎物算法交易 342
9.4.3 自动做市商策略 343
9.4.4 程序化交易 343
理论篇
第 10章 人工智能 346
10.1 主要内容 347
10.1.1 机器学习 347
10.1.2 自动推理 350
10.1.3 专家系统 353
10.1.4 模式识别 356
10.1.5 人工神经网络 358
10.1.6 遗传算法 362
10.2 人工智能在量化投资中的应用 366
10.2.1 模式识别短线择时 366
10.2.2 rbf神经网络股价预测 370
10.2.3 基于遗传算法的新股预测 375
第 11章 数据挖掘 381
11.1 基本概念 382
11.1.1 主要模型 382
11.1.2 典型方法 384
11.2 主要内容 385
11.2.1 分类与预测 385
11.2.2 关联规则 391
11.2.3 聚类分析 397
11.3 数据挖掘在量化投资中的应用 400
11.3.1 基于som 网络的股票聚类分析方法 400
11.3.2 基于关联规则的板块轮动 403
第 12章 小波分析 407
12.1 基本概念 408
12.2 小波变换主要内容 409
12.2.1 连续小波变换 409
12.2.2 连续小波变换的离散化 410
12.2.3 多分辨分析与mallat算法 411
12.3小波分析在量化投资中的应用 414
12.3.1 k线小波去噪 414
12.3.2 金融时序数据预测 420
第 13章 支持向量机 429
13.1 基本概念 430
13.1.1 线性svm 430
13.1.2 非线性svm 433
13.1.3 svm分类器参数选择 435
13.1.4 svm分类器从二类到多类的推广 436
13.2 模糊支持向量机 437
13.2.1 增加模糊后处理的svm 437
13.2.2 引入模糊因子的svm训练算法 439
13.3 svm在量化投资中的应用 440
13.3.1 复杂金融时序数据预测 440
13.3.2 趋势拐点预测 445
第 14章 分形理论 452
14.1 基本概念 453
14.1.1 分形定义 453
14.1.2 几种典型的分形 454
14.1.3 分形理论的应用 456
14.2 主要内容 457
14.2.1 分形维数 457
14.2.2 l系统 458
14.2.3 ifs系统 460
14.3 分形理论在量化投资中的应用 461
14.3.1 大趋势预测 461
14.3.2 汇率预测 466
第 15章 随机过程 473
15.1 基本概念 473
15.2 主要内容 476
15.2.1 随机过程的分布函数 476
15.2.2 随机过程的数字特征 476
15.2.3 几种常见的随机过程 477
15.2.4 平稳随机过程 479
15.3 灰色马尔可夫链股市预测 480
第 16章 it技术 486
16.1 数据仓库技术 486
16.1.1 从数据库到数据仓库 487
16.1.2 数据仓库中的数据组织 489
16.1.3 数据仓库的关键技术 491
16.2 编程语言 493
16.2.1 GPU算法交易 493
16.2.2 MATLAB 语言 497
16.2.3 c#语言 504
第 17章 主要数据与工具 509
17.1 名策多因子分析系统 509
17.2 MultiCharts:程序化交易平台 511
17.3 交易开拓者:期货自动交易平台 514
17.4 大连交易所套利指令 518
17.5 mt5:外汇自动交易平台 522
第 18章 量化对冲交易系统:D-alpha 528
18.1 系统构架 528
18.2 策略分析流程 530
18.3 核心算法 532
18.4 验证结果 534
表目录
表1 1 不同投资策略对比 7
表2 1 多因子选股模型候选因子 30
表2 2 多因子模型候选因子初步检验 31
表2 3 多因子模型中通过检验的有效因子 32
表2 4 多因子模型中剔除冗余后的因子 33
表2 5 多因子模型组合分段收益率 33
表2 6 晨星市场风格判别法 36
表2 7 夏普收益率基础投资风格鉴别 37
表2 8 中信标普风格指数 41
表2 9 风格动量策略组合月均收益率 43
表2 10 大小盘风格轮动策略月收益率均值 46
表2 11 中国货币周期分段(2000—2009年) 49
表2 12 沪深300行业指数统计 50
表2 13 不同货币阶段不同行业的收益率 51
表2 14 招商资金流模型(cmsmf)计算方法 58
表2 15 招商资金流模型(cmsmf)选股指标定义 59
表2 16 资金流模型策略——沪深300 61
表2 17 资金流模型策略——全市场 62
表2 18 动量组合相对基准的平均年化超额收益(部分) 68
表2 19 反转组合相对基准的平均年化超额收益(部分) 69
表2 20 动量策略风险收益分析 71
表2 21 反转策略风险收益分析 73
表2 22 趋势追踪技术收益率 93
表2 23 筹码选股模型中单个指标的收益率情况对比 99
表3 1 ma指标择时测试最好的20 组参数及其表现 117
表3 2 4个趋势型指标最优参数下的独立择时交易表现比较 120
表3 3 有交易成本情况下不同信号个数下的综合择时策略 120
表3 4 自适应均线择时策略收益率分析 124
表3 5 市场情绪类别 126
表3 6 沪深300指数在不同情绪区域的当月收益率比较 128
表3 7 沪深300指数在不同情绪变化区域的当月收益率比较 129
表3 8 沪深300指数在不同情绪区域的次月收益率比较 130
表3 9 沪深300指数在不同情绪变化区域的次月收益率比较 130
表3 10 情绪指数择时收益率统计 132
表3 11 svm择时模型的指标 156
表3 12 svm对沪深300指数预测结果指标汇总 156
表3 13 svm择时模型在整体市场的表现 156
表3 14 svm择时模型在单边上涨市的表现 157
表3 15 svm择时模型在单边下跌市的表现 158
表3 16 svm择时模型在震荡市的表现 159
表3 17 噪声交易在熊市择时的收益率 170
表4 1 各种方法在不同股票数量下的跟踪误差(年化) 190
表4-2 股指期货多头跨期套利过程分析 199
表4 3 不同开仓比例下的不同保证金水平能够覆盖的市场波动及其概率 211
表4 4 不同仓单持有期下的保证金覆盖比例 212
表6 1 融券标的股票中在样本期内最相关的50 对组合(部分) 248
表6 2 残差的平稳性、自相关等检验 249
表6 3 在不同的阈值下建仓、平仓所能获得的平均收益 251
表6 4 采用不同的模型在样本内获取的收益率及最优阈值 252
表6 5 采用不同的模型、不同的外推方法在样本外获取的收益率(%) 253
表6 6 主成分配对交易在样本内取得的收益率及最优阈值 255
表6 7 主成分配对交易在样本外的效果 255
表6-8 各种模型下统计套利的结果 256
表6 9 延后开仓+提前平仓策略实证结果 260
表6 10 各行业的配对交易结果 261
表7 1 多头股票-期权套利综合分析表 283
表7 2 多头股票—股票期权套利案例损益分析表 284
表7 3 多头股票-指数期权套利案例损益分析表 285
表7 4 转换套利分析过程 286
表7 5 买入跨式套利综合分析表 289
表7 6 买入跨式套利交易细节 289
表7 7 卖出跨式套利综合分析表 291
表7 8 卖出跨式套利交易细节 292
表7 9 买入宽跨式套利综合分析表 293
表7 10 卖出宽跨式套利综合分析表 294
表7 11 买入蝶式套利综合分析表 296
表7 12 卖出蝶式套利综合分析表 298
表7 13 买入飞鹰套利分析表 300
表7 14 卖出飞鹰式套利综合分析表 301
表9 1 主要并购方式 324
表9 2 并购套利流程 325
表9 3 鹏华300 lof两次正向套利的情况 339
表9 4 鹏华300 lof两次反向套利的情况 340
表10 1 自动推理中连词系统 352
表10 2 模式识别短线择时样本数据分类 369
表10 3 rbf神经网络股价预测结果 375
表10 4 遗传算法新股预测参数设置 379
表10 5 遗传算法新股预测结果 380
表11 1 决策树数据表 389
表11 2 关联规则案例数据表 392
表11 3 som股票聚类分析结果 403
表11 4 21种股票板块指数布尔关系表数据片断 404
表12 1 深发展a日收盘价小波分析方法预测值与实际值比较 427
表12 2 不同分解层数的误差均方根值 428
表13 1 svm沪深300指数预测误差情况 445
表13 2 svm指数预测和神经网络预测的比较 445
表13 3 技术反转点定义与图型 448
表13 4 svm趋势拐点预测结果 450
表14 1 持续大涨前后分形各主要参数值 463
表14 2 持续大跌前后分形个主要参数值 465
表14 3 外汇r/ s 分析的各项指标 469
表14 4 v(r/s)曲线回归检验 470
表15 1 灰色马尔可夫链预测深证成指样本内(2005/1—2006/8) 484
表15 2 灰色马尔可夫链预测深证成指样本外(2006/9—2006/12) 484
表16-1 vba的12种数据类型 499
表18-1 d-alpha系统在全球市场收益率分析 534
⑷ 股票概念的聚类用什么模型
所有股票分析软件都有这个功能,输入想看概念板块,如煤炭输入MT小写就可以看到了
⑸ 如何用MATLAB对股票数据做聚类分析
直接调kmeans函数。
k = 3;%类别数
idx = kmeans(X, k);%idx就是每个样本点的标号。
⑹ 波动聚类(volatility clustering)
经典资本市场理论在描述股票市场收益率变化时,所采用的计量模型一般都假定收益率方差保持不变。这一模型符合金融市场中有效市场理论,运用简便,常用来预测和估算股票价格。但对金融数据的大量实证研究表明,有些假设不甚合理。一些金融时间序列常常会出现某一特征的值成群出现的现象。如对股票收益率建模,其随机搅动项往往在较大幅度波动后面伴随着较大幅度的波动,在较小波动幅度后面紧接着较小幅度的波动,这种性质称为波动率聚类(volatility clustering)。该现象的出现源于外部冲击对股价波动的持续性影响,在收益率的分布上则表现为出尖峰厚尾(fattails)的特征。
⑺ python自学,需要学习那些内容有没有课程大纲推荐
一般对于python的学习主要可以分为4大阶段:
第一阶段学习Python核心编程,主要是Python语言基础、Linux、MySQL,前期学习Python编程语言基础内容;中期主要涉及OOP基础知识,学习后应该能自己处理OOP问题,具有初步软件工程知识并树立模块化编程思想,以及了解什么是数据库以及相关知识。
第二个阶段主要是学习全栈开发,主要是Web编程基础、Flask框架、Django框架、Tornado框架,这一部分主要是前端网站开发流程,培养方向是前端开发工程师或者是Web全栈开发工程师、Python开发工程师。
第三阶段是网络爬虫,主要包括数据爬取、Scrapy框架项目、分布式爬虫框架等,培养方向是Python爬虫工程师
第四阶段培训的是人工智能,主要是数据分析、机器学习、深度学习,能够学到人工智能领域中的图像识别技术,对行业中流行的数据模型和算法有所了解,使用主流人工智能框架进行项目开发,深入理解算法原理与实现步骤。培养方向是数据分析师、算法工程师、数据挖掘工程师以及人工智能工程师。