当前位置:首页 » 分析预测 » tensflow股票走势预测
扩展阅读
电击器 2025-07-20 00:54:50
贷款买股票涉及犯罪吗 2025-07-20 00:32:45

tensflow股票走势预测

发布时间: 2021-09-10 02:42:48

Ⅰ (tensorflow )基于堆叠去噪自动编码机,来训练和预测交通流,求大神帮忙

我给你堆叠去噪自动编码机一篇,原创,格式符合.

Ⅱ tensorflow怎么输出预测的标签

TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务

Ⅲ tensorflow cnn 分类怎么只能预测一批样本,不能预测一个样本

预测一个样本的时候同样可以看做是预测一批样本, 只不过这一批只有一个
X-test = [ x0,x1,x2 ... ]
model.predict(X-test)
或者 model.predict( [ x0 ] )
或者 model.predict( X-test[0:1] )
都是可以的

Ⅳ 如何加快tensorflow模型预测速度架构设计

1.用更高性能的GPU服务器(最砸钱最省力的结果)

2.用flask或tensorflowserving做模型线上部署,可以省却读model的时间

Ⅳ tensorflow怎么定义回归准确率

程序员为什么要学深度学习? 深度学习本身是一个非常庞大的知识体系。本文更多想从程序员的视角出发,让大家观察一下深度学习对程序员意味着什么,以及我们如何利用这样一个高速发展的学科,来帮助程序员提升开发的能力。

Ⅵ 如何优雅地利用tensorflow预测时间序列

在刚刚发布的TensorFlow 1.3版本中,引入了一个TensorFlow Time Series模块(源码地址为:tensorflow/tensorflow,以下简称为TFTS)。TFTS专门设计了一套针对时间序列预测问题的API,目前提供AR、Anomaly Mixture AR、LSTM三种预测模型。

Ⅶ TensorFlow的优势和缺点有哪些

TensorFlow框架的前身是Google的DistBelief V2,是谷歌大脑项目的深度网络工具库,一些人认为TensorFlow是借鉴Theano重构的。
Tensorflow一经开源,马上引起了大量开发者的跟进。Tensorflow广泛支持包括图像、手写字、语音识别、预测和自然语言处理等大量功能。TensorFlow遵循Apache 2.0开源协议。
TensorFlow在2017年2月15号发布了其1.0版本,这个版本是对先前八个不完善版本的整合。以下是TensorFlow取得成功的一些列原因:
TensorFLow提供这些工具:
TensorBroad是一个设计优良的可视化网络构建和展示工具;
TensorFlow Serving通过保持相同的服务器架构和API,可以方便地配置新算法和环境。TensorFlow Serving 还提供开箱即用的模型,并且可以轻松扩展以支持其他的模型和数据。
TensorFlow编程接口包括Python和C++,Java,Go,R和Haskell语言的接口也在alpha版中支持。另外,TensorFlow还支持谷歌和亚马逊的云环境。
TensorFlow的0.12版本支持Windows 7, 8, Server 2016系统。由于采用C++ Eigen库,TensorFlow类库可以在ARM架构平台上编译和优化。这意味着你可以不需要额外实现模型解码器或者Python解释器就可以在多种服务器和移动设备上部署训练好的模型。
TensorFlow提供细致的网络层使用户可以构建新的复杂的层结构而不需要自己从底层实现它们。子图允许用户查看和恢复图的任意边的数据。这对复杂计算的Debug非常有用。
分布式TensorFlow在0.8版本推出,提供了并行计算支持,可以让模型的不同 部分在不同设备上并行训练。
TensorFlow在斯坦福大学,伯克利学院,多伦多大学和Udacity(2016年3月成立的在线学校)均有教学。
TensorFlow的缺点有:
每个计算流必须构建成图,没有符号循环,这样使得一些计算变得困难;
没有三维卷积,因此无法做视频识别;
即便已经比原有版本(0.5)快了58倍,但执行性能仍然不及它的竞争者。

Ⅷ 怎么理解tensorflow中tf.train.shuffle

基本使用

使用 TensorFlow, 你必须明白 TensorFlow:

使用图 (graph) 来表示计算任务.
在被称之为 会话 (Session) 的上下文 (context) 中执行图.
使用 tensor 表示数据.
通过 变量 (Variable) 维护状态.
使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.

综述

TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op
(operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算,
产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组.
例如, 你可以将一小组图像集表示为一个四维浮点数数组,
这四个维度分别是 [batch, height, width, channels].

一个 TensorFlow 图描述了计算的过程. 为了进行计算, 图必须在 会话 里被启动.
会话 将图的 op 分发到诸如 CPU 或 GPU 之类的 设备 上, 同时提供执行 op 的方法.
这些方法执行后, 将产生的 tensor 返回. 在 Python 语言中, 返回的 tensor 是
numpy ndarray 对象; 在 C 和 C++ 语言中, 返回的 tensor 是
tensorflow::Tensor 实例.

计算图

TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段. 在构建阶段, op 的执行步骤
被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op.

例如, 通常在构建阶段创建一个图来表示和训练神经网络, 然后在执行阶段反复执行图中的训练 op.

TensorFlow 支持 C, C++, Python 编程语言. 目前, TensorFlow 的 Python 库更加易用,
它提供了大量的辅助函数来简化构建图的工作, 这些函数尚未被 C 和 C++ 库支持.

三种语言的会话库 (session libraries) 是一致的.

构建图

构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如 常量 (Constant). 源 op 的输出被传递给其它 op 做运算.

Python 库中, op 构造器的返回值代表被构造出的 op 的输出, 这些返回值可以传递给其它
op 构造器作为输入.

TensorFlow Python 库有一个默认图 (default graph), op 构造器可以为其增加节点. 这个默认图对
许多程序来说已经足够用了. 阅读 Graph 类 文档
来了解如何管理多个图.
import tensorflow as tf

# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])

# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])

# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'proct' 代表矩阵乘法的结果.
proct = tf.matmul(matrix1, matrix2)

默认图现在有三个节点, 两个 constant() op, 和一个matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的
结果, 你必须在会话里启动这个图.

在一个会话中启动图

构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数,
会话构造器将启动默认图.

欲了解完整的会话 API, 请阅读Session 类.
# 启动默认图.
sess = tf.Session()

# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'proct' 作为该方法的参数.
# 上面提到, 'proct' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
#
# 函数调用 'run(proct)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(proct)
print result
# ==> [[ 12.]]

# 任务完成, 关闭会话.
sess.close()

Session 对象在使用完后需要关闭以释放资源. 除了显式调用 close 外, 也可以使用 "with" 代码
来自动完成关闭动作.
with tf.Session() as sess:
result = sess.run([proct])
print result

在实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU
或 GPU). 一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测. 如果检测到 GPU, TensorFlow
会尽可能地利用找到的第一个 GPU 来执行操作.

如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU 默认是不参与计算的. 为了让 TensorFlow
使用这些 GPU, 你必须将 op 明确指派给它们执行. withDevice 语句用来指派特定的 CPU 或 GPU
执行操作:
with tf.Session() as sess:
with tf.device("/gpu:1"):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
proct = tf.matmul(matrix1, matrix2)

设备用字符串进行标识. 目前支持的设备包括:

"/cpu:0": 机器的 CPU.
"/gpu:0": 机器的第一个 GPU, 如果有的话.
"/gpu:1": 机器的第二个 GPU, 以此类推.

阅读使用GPU章节, 了解 TensorFlow GPU 使用的更多信息.

交互式使用

文档中的 Python 示例使用一个会话 Session 来
启动图, 并调用 Session.run() 方法执行操作.

为了便于使用诸如 IPython 之类的 Python 交互环境, 可以使用
InteractiveSession 代替
Session 类, 使用 Tensor.eval()
和 Operation.run() 方法代替
Session.run(). 这样可以避免使用一个变量来持有会话.
# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()

x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])

# 使用初始化器 initializer op 的 run() 方法初始化 'x'
x.initializer.run()

# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]

Tensor

TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor.
你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和
一个 shape. 想了解 TensorFlow 是如何处理这些概念的, 参见
Rank, Shape, 和 Type.

变量

Variables for more details.
变量维护图执行过程中的状态信息. 下面的例子演示了如何使用变量实现一个简单的计数器. 参见
变量 章节了解更多细节.
# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name="counter")

# 创建一个 op, 其作用是使 state 增加 1

one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

# 启动图后, 变量必须先经过`初始化` (init) op 初始化,
# 首先必须增加一个`初始化` op 到图中.
init_op = tf.initialize_all_variables()

# 启动图, 运行 op
with tf.Session() as sess:
# 运行 'init' op
sess.run(init_op)
# 打印 'state' 的初始值
print sess.run(state)
# 运行 op, 更新 'state', 并打印 'state'
for _ in range(3):
sess.run(update)
print sess.run(state)

# 输出:

# 0
# 1
# 2
# 3

代码中 assign() 操作是图所描绘的表达式的一部分, 正如 add() 操作一样. 所以在调用 run()
执行表达式之前, 它并不会真正执行赋值操作.

通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中.
在训练过程中, 通过重复运行训练图, 更新这个 tensor.

Fetch

为了取回操作的输出内容, 可以在使用 Session 对象的 run() 调用 执行图时, 传入一些 tensor,
这些 tensor 会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点 state, 但是你也可以取回多个
tensor:
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)

with tf.Session() as sess:
result = sess.run([mul, intermed])
print result

# 输出:
# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]

需要获取的多个 tensor 值,在 op 的一次运行中一起获得(而不是逐个去获取 tensor)。

Feed

上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制
可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor.

feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数.
feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 "feed" 操作,
标记的方法是使用 tf.placeholder() 为这些操作创建占位符.

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)

with tf.Session() as sess:
print sess.run([output], feed_dict={input1:[7.], input2:[2.]})

# 输出:
# [array([ 14.], dtype=float32)]

for a larger-scale example of feeds.
如果没有正确提供 feed, placeholder() 操作将会产生错误.
MNIST 全连通 feed 教程
(source code)
给出了一个更大规模的使用 feed 的例子.

Ⅸ tensorflow 能拿到每个标签的概率值吗

交叉熵一开始是信息论上的概念,后来在机器学习中引入用来做误差度量的,它反映的是预测值和实际值之间的误差,机器学习通过不断减少这个误差,来达到构建预测模型的目的。如何通俗的解释信息熵,交叉熵和相对熵

Ⅹ 如何使用最流行框架Tensorflow进行时间序列分析

1.稳定网络:Tensorflow毕竟自Google官文档访问稳定且般说于英文文档资料疑问Google搜索结要比Bai(偏见各所气图电影啥网络做)

2.Github:源程序网站Linux内核网站托管Github核Git种版本控制系统已经逐渐取代SVN网站托管高质量或者说世界顶尖源项目比Tensorflow习网站何使用注册账号习Git使用网站自tutorialguide

3.Linux: Tensorflow主要运行平台Linux目前Windows运行案虚拟机深度习计算要求比较高虚拟机效率太高推荐原Linux运行新手推荐发行版Ubuntu 或者Linux mint自行搜索习Linux处源软件都only linux