当前位置:首页 » 分析预测 » 用股票数据r语言回归分析案例
扩展阅读
俄罗斯鞑靼斯坦共和国 2025-05-12 07:01:14
中大为德股票行情6 2025-05-12 06:50:52
如何查新上市的股票代码 2025-05-12 06:17:29

用股票数据r语言回归分析案例

发布时间: 2022-06-13 19:14:36

㈠ 如何用r软件对给定数据进行回归分析(不能用lm函数)

可以试着探索一下summary(lm(y~x))到底是什么。 首先看一下summary(lm(y~x))是什么数据类型: > m class(summary(m)) [1] "summary.lm" #可以看到,lm的结果是一个"summary.lm" 对象。这有些显而易见。好吧,继续探索。 R语言中所有的对象都建立在一些native data structures之上,那么summary(lm(y~x)的native data structure是什么呢?可以用mode()命令查看。

㈡ 对数据框作回归分析r语言代码怎么写

Class.forName("xx.xx")等同于Class.forName("xx.xx",true,CALLClass.class.getClassLoader()),第二个参数(bool)表示装载类的时候是否初始化该类,即调用类的静态块的语句及初始化静态成员变量。 ClassLoader loader = Thread.currentThread.getContextClassLoader(); //也可以用

㈢ 如何用R语言提取股票行情数据

最上边一行菜单栏倒数第二个“高级”-“关联任务定义”-选取最右边从上到下第二个按钮,找到2009年决算任务安装路径-确定。 然后 最上边一行菜单栏正数第二个“录入”-“上年数据提取”即可 提取完了,注意修改与去年不同的科目代码!

㈣ 用R语言把如下数据做线性回归的代码

最主要是找到异常连接的主程序;
如果暂时解决,可以用ipsec(Linux下用iptables)阻止连接请求。

㈤ 基于R语言实现Lasso回归分析

基于R语言实现Lasso回归分析
主要步骤:
将数据存成csv格式,逗号分隔
在R中,读取数据,然后将数据转成矩阵形式
加载lars包,先安装
调用lars函数
确定Cp值最小的步数
确定筛选出的变量,并计算回归系数
具体代码如下:

需要注意的地方:
1、数据读取的方法,这里用的file.choose( ),这样做的好处是,会弹出窗口让你选择你要加载进来的文件,免去了输入路径的苦恼。
2、数据要转为矩阵形式
3、(la) 可以看到R方,这里为0.66,略低
4、图如何看? summary的结果里,第1步是Cp最小的,在图里,看到第1步与横轴0.0的交界处,只有变量1是非0的。所以筛选出的是nongyangungun
Ps: R语言只学习了数据输入,及一些简单的处理,图形可视化部分尚未学习,等论文写完了,再把这部分认真学习一下~~在这里立个flag

㈥ 如何在r语言中抓取股票数据并分析论文

用quantomd包
然后getsymbols函数

分析论文 要看你研究方向
如果是看影响因素 一般回归就行
如果看股票波动和预测 可能需要时间序列

㈦ 如何用R语言做线性相关回归分析

可以直接用corrcoef(x,y)函数啊……
例如,求出已知的x,y向量的相关系数矩阵R,则输入
R=corrcoef(x,y)
然后调用 max(max(R)),可以求出最大值

㈧ 如何用R 语言 建立 股票价格的时间序列

在下想用R语言对股票价格进行时间序列分析。
问题出在第一步,如何将股票价格转换为时间序列。
我想用的语句是 pri <- ts (data, start=(), frequency= )
但是我不知道frequency 项该如何填?
因为股票的交易日是一周五天的。 那么这个frequency 该如何设置呢?
我知道通常frequency= 12 为月度数据,frequency= 4 为季度数据,frequency= 1 为年度数据 但日数据怎么写我就不知道了

初学R语言,还望各位大侠多多帮助。

㈨ R语言 广义加性模型GAM

原文链接:http://tecdat.cn/?p=20882

1导言

这篇文章探讨了为什么使用广义相加模型是一个不错的选择。为此,我们首先需要看一下线性回归,看看为什么在某些情况下它可能不是最佳选择。


2回归模型

假设我们有一些带有两个属性Y和X的数据。如果它们是线性相关的,则它们可能看起来像这样:

a<-ggplot(my_data, aes(x=X,y=Y))+geom_point()+

为了检查这种关系,我们可以使用回归模型。线性回归是一种使用X来预测变量Y的方法。将其应用于我们的数据将预测成红线的一组值:

a+geom_smooth(col="red", method="lm")+

这就是“直线方程式”。根据此等式,我们可以从直线在y轴上开始的位置(“截距”或α)开始描述,并且每个单位的x都增加了多少y(“斜率”),我们将它称为x的系数,或称为β)。还有一点自然的波动,如果没有的话,所有的点都将是完美的。我们将此称为“残差”(ϵ)。数学上是:

  • #### Method: GCV Optimizer: magic## Smoothing parameter selection converged after 4 iterations.## The RMS GCV score gradient at convergence was 1.107369e-05 .## The Hessian was positive definite.## Model rank = 10 / 10#### Basis dimension (k) checking results. Low p-value (k-index<1) may## indicate that k is too low, especially if edf is close to k'.#### k' edf k-index p-value## s(X) 9.00 6.09 1.1 0.97

  • 10它比线性模型好吗?

    让我们对比具有相同数据的普通线性回归模型:

  • anova(my_lm, my_gam)

  • ## Analysis of Variance Table#### Model 1: Y ~ X## Model 2: Y ~ s(X, bs = "cr")## Res.Df RSS Df Sum of Sq F Pr(>F)## 1 298.00 88154## 2 292.91 60613 5.0873 27540 26.161 < 2.2e-16 ***## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  • 我们的方差分析函数在这里执行了f检验,我们的GAM模型明显优于线性回归。

    11小结

    所以,我们看了什么是回归模型,我们是如何解释一个变量y和另一个变量x的。其中一个基本假设是线性关系,但情况并非总是这样。当关系在x的范围内变化时,我们可以使用函数来改变这个形状。一个很好的方法是在“结”点处将光滑曲线链接在一起,我们称之为“样条曲线”

    我们可以在常规回归中使用这些样条曲线,但是如果我们在GAM的背景中使用它们,我们同时估计了回归模型以及如何使我们的模型更光滑。

    上面的示例显示了基于样条的GAM,其拟合度比线性回归模型好得多。

    12参考:

  • NELDER, J. A. & WEDDERBURN, R. W. M. 1972. Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General), 135, 370-384.

  • HARRELL, F. E., JR. 2001. Regression Modeling Strategies, New York, Springer-Verlag New York.

  • 最受欢迎的见解

    1.R语言多元Logistic逻辑回归 应用案例

    2.面板平滑转移回归(PSTR)分析案例实现

    3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR)

    4.R语言泊松Poisson回归模型分析案例

    5.R语言回归中的Hosmer-Lemeshow拟合优度检验

    6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

    7.在R语言中实现Logistic逻辑回归

    8.python用线性回归预测股票价格

    9.R语言如何在生存分析与Cox回归中计算IDI,NRI指标

    ㈩ r语言使用上述的回归模型,向后预测5年,看gdp会是多少

    (1)plot(lm.ridge(GDP~Consume+Investment+IO+Population+Jobless+Goods,data=dat,lambda=seq(0,0.3,0.001)))#和线性回归类似,这个plot可以画出岭迹图,lambda=seq(0,0.3,0.001)设置范围和间隔,可以观察岭迹图,人工选择,但是这样主观性较强。(2)select(lm.ridge(GDP~Consume+Investment+IO+Population+Jobless+Goods,data=dat,lambda=seq(0,0.3,0.001)))#利用select函数找出最优岭参数lambda,会有三个值,任选一个即可。lm.ridge(GDP~Consume+Investment+IO+Population+Jobless+Goods,data=dat,lambda=0.09)#通过(1)或(2)把选取的lmbda参数写到岭回归函数中去,在这里lambda=0.09。