⑴ 國內有哪些數據分析和數據挖掘的牛人
數據分析的頂級牛人,是被各國頂級賭場拉黑名單的。
次一等的,是自己玩投放做點大家都會但都覺得不賺錢卻只有他自己能悶聲賺錢的。
再往下,股票證券的自動高頻交易系統,一水的大數據。廣告優化平台,類似芒果移動,mediav這樣的,以及推薦平台 百分點這樣的,靠數據吃飯的公司。
⑵ 最近學金融,好多知識看不懂啊::>_<:: 請結合大數據的理念對數據分析和數據挖掘能在金融市場的
首先是通過大數據可以分析客戶的個人信息,收入,風險偏好等,可以推薦相應的金融產品,如果哪些年齡段和工作的人群適合基金,保險和其它有價證券;
其次是金融產品的開發上,主要有保險產品和一些其它產品,通過發病率,災情概率等進行精算,開發出保險產品,一些其它的金融新產品也會涉及到數據分析;
再次是金融產品的定價及投資分析上,很多因素都會影響金融產品,如股票,期貨,現貨等,通過數據挖掘,找出其影響因素,進行價格分析。
大數據和數據挖掘主要有這幾方面的應用,當然還有其它的方面,很多論述金融與數據分析的書中有很多的,可以進一步研究,還望採納。
⑶ 股票的數據挖掘用什麼演算法最合適
寫個貝葉斯分類演算法
對文本進行分類
⑷ 股票數據挖掘的演算法有那些最好給些應用的例子。
給我你的郵箱 我發給你
⑸ 股票市場搞數據挖掘,數據分析來炒股有沒機會
有機會,而且機會不小,但是我等散戶靠數據分析,可能自身實力差的太懸殊了。
硬體設備就不達標哦。
⑹ 什麼是數據挖掘
所謂數據挖掘,是指從大量的數據中發現並抽取隱含的、未知的、有潛在應用價值的知識過程.數據挖掘的目的是為決策者提供有效的決策支持。
美國SAS軟體研究所將數據挖掘定義為:「按照既定的業務目標,對大量的企業數據進行探索、揭示隱藏其中的規律性並進一步模型化的先進、有效的方法.」
⑺ 「基於數據挖掘的股票交易分析--模型分析」 這個題目,是什麼意思 哪位哥們,能給點具體解釋么
很難寫,主要牽涉到數據挖掘(軟體)和股票交易兩方面的專業。數據挖掘需要設計軟體進行建模,而股票交易需要進行實證(博士論文都可以寫了)。
建議:可以寫基於統計挖掘的股票交易分析--模型分析,這樣就簡單多了,只需要在股票軟體上得出一些統計數據,然後進行驗證就可以了,可操作性強。
⑻ 什麼叫數據挖掘
數據挖掘是從大量的數據中,抽取出潛在的、有價值的知識(模型或規則)的過程。
1. 數據挖掘能做什麼?
1)數據挖掘能做以下六種不同事情(分析方法):
分類 (Classification)
估值(Estimation)
預言(Prediction)
相關性分組或關聯規則(Affinity grouping or association rules)
聚集(Clustering)
描述和可視化(Des cription and Visualization)
2)數據挖掘分類
以上六種數據挖掘的分析方法可以分為兩類:直接數據挖掘;間接數據挖掘
直接數據挖掘
目標是利用可用的數據建立一個模型,這個模型對剩餘的數據,對一個特定的變數(可以
理解成資料庫中表的屬性,即列)進行描述。
間接數據挖掘
目標中沒有選出某一具體的變數,用模型進行描述;而是在所有的變數中建立起某種關系
。
分類、估值、預言屬於直接數據挖掘;後三種屬於間接數據挖掘
3)各種分析方法的簡介
分類 (Classification)
首先從數據中選出已經分好類的訓練集,在該訓練集上運用數據挖掘分類的技術,建立分
類模型,對於沒有分類的數據進行分類。
例子:
a. 信用卡申請者,分類為低、中、高風險
b. 分配客戶到預先定義的客戶分片
注意: 類的個數是確定的,預先定義好的
估值(Estimation)
估值與分類類似,不同之處在於,分類描述的是離散型變數的輸出,而估值處理連續值的
輸出;分類的類別是確定數目的,估值的量是不確定的。
例子:
a. 根據購買模式,估計一個家庭的孩子個數
b. 根據購買模式,估計一個家庭的收入
c. 估計real estate的價值
一般來說,估值可以作為分類的前一步工作。給定一些輸入數據,通過估值,得到未知的
連續變數的值,然後,根據預先設定的閾值,進行分類。例如:銀行對家庭貸款業務,運
用估值,給各個客戶記分(Score 0~1)。然後,根據閾值,將貸款級別分類。
預言(Prediction)
通常,預言是通過分類或估值起作用的,也就是說,通過分類或估值得出模型,該模型用
於對未知變數的預言。從這種意義上說,預言其實沒有必要分為一個單獨的類。
預言其目的是對未來未知變數的預測,這種預測是需要時間來驗證的,即必須經過一定時
間後,才知道預言准確性是多少。
相關性分組或關聯規則(Affinity grouping or association rules)
決定哪些事情將一起發生。
例子:
a. 超市中客戶在購買A的同時,經常會購買B,即A => B(關聯規則)
b. 客戶在購買A後,隔一段時間,會購買B (序列分析)
聚集(Clustering)
聚集是對記錄分組,把相似的記錄在一個聚集里。聚集和分類的區別是聚集不依賴於預先
定義好的類,不需要訓練集。
例子:
a. 一些特定症狀的聚集可能預示了一個特定的疾病
b. 租VCD類型不相似的客戶聚集,可能暗示成員屬於不同的亞文化群
聚集通常作為數據挖掘的第一步。例如,"哪一種類的促銷對客戶響應最好?",對於這一類問題,首先對整個客戶做聚集,將客戶分組在各自的聚集里,然後對每個不同的聚集,回答問題,可能效果更好。
描述和可視化(Des cription and Visualization)
是對數據挖掘結果的表示方式。
2.數據挖掘的商業背景
數據挖掘首先是需要商業環境中收集了大量的數據,然後要求挖掘的知識是有價值的。有
價值對商業而言,不外乎三種情況:降低開銷;提高收入;增加股票價格。
1)數據挖掘作為研究工具 (Research)
2)數據挖掘提高過程式控制制(Process Improvement)
3)數據挖掘作為市場營銷工具(Marketing)
4)數據挖掘作為客戶關系管理CRM工具(Customer Relationship Management)
3.數據挖掘的技術背景
1)數據挖掘技術包括三個主要部分:演算法和技術;數據;建模能力
2)數據挖掘和機器學習(Machine Learning)
機器學習是計算機科學和人工智慧AI發展的產物
機器學習分為兩種學習方式:自組織學習(如神經網路);從例子中歸納出規則(如決策樹)
數據挖掘由來
數據挖掘是八十年代,投資AI研究項目失敗後,AI轉入實際應用時提出的。它是一個新興
的,面向商業應用的AI研究。選擇數據挖掘這一術語,表明了與統計、精算、長期從事預
言模型的經濟學家之間沒有技術的重疊。
3)數據挖掘和統計
統計也開始支持數據挖掘。統計本包括預言演算法(回歸)、抽樣、基於經驗的設計等
4)數據挖掘和決策支持系統
數據倉庫
OLAP(聯機分析處理)、Data Mart(數據集市)、多維資料庫
決策支持工具融合
將數據倉庫、OLAP,數據挖掘融合在一起,構成企業決策分析環境。
4. 數據挖掘的社會背景
數據挖掘與個人預言:數據挖掘號稱能通過歷史數據的分析,預測客戶的行為,而事實上,客戶自己可能都不明確自己下一步要作什麼。所以,數據挖掘的結果,沒有人們想像中神秘,它不可能是完全正確的。
5.數據挖掘技術實現
在技術上可以根據它的工作過程分為:數據的抽取、數據的存儲和管理、數據的展現等關鍵技術。
1) 數據的抽取
數據的抽取是數據進入倉庫的入口。由於數據倉庫是一個獨立的數據環境,它需要通過抽取過程將數據從聯機事務處理系統、外部數據源、離線的數據存儲介質中導入數據倉庫。數據抽取在技術上主要涉及互連、復制、增量、轉換、調度和監控等幾個方面的處理。在數據抽取方面,未來的技術發展將集中在系統功能集成化方面,以適應數據倉庫本身或數據源的變化,使系統更便於管理和維護。
2) 數據的存儲和管理
數據倉庫的組織管理方式決定了它有別於傳統資料庫的特性,也決定了其對外部數據的表現形式。數據倉庫管理所涉及的數據量比傳統事務處理大得多,且隨時間的推移而快速累積。在數據倉庫的數據存儲和管理中需要解決的是如何管理大量的數據、如何並行處理大量的數據、如何優化查詢等。目前,許多資料庫廠家提供的技術解決方案是擴展關系型資料庫的功能,將普通關系資料庫改造成適合擔當數據倉庫的伺服器。
3) 數據的展現
在數據展現方面主要的方式有:
查詢:實現預定義查詢、動態查詢、OLAP查詢與決策支持智能查詢;報表:產生關系數據表格、復雜表格、OLAP表格、報告以及各種綜合報表;可視化:用易於理解的點線圖、直方圖、餅圖、網狀圖、互動式可視化、動態模擬、計算機動畫技術表現復雜數據及其相互關系;統計:進行平均值、最大值、最小值、期望、方差、匯總、排序等各種統計分析;挖掘:利用數據挖掘等方法,從數據中得到關於數據關系和模式的知識。
6.數據挖掘與數據倉庫融合發展
數據挖掘和數據倉庫的協同工作,一方面,可以迎合和簡化數據挖掘過程中的重要步驟,提高數據挖掘的效率和能力,確保數據挖掘中數據來源的廣泛性和完整性。另一方面,數據挖掘技術已經成為數據倉庫應用中極為重要和相對獨立的方面和工具。
數據挖掘和數據倉庫是融合與互動發展的,其學術研究價值和應用研究前景將是令人振奮的。它是數據挖掘專家、數據倉庫技術人員和行業專家共同努力的成果,更是廣大渴望從資料庫「奴隸」到資料庫「主人」轉變的企業最終用戶的通途。
⑼ 如何獲得股票行情數據,自己編程處理進行數據挖掘
行情數據可到通達信或者同花順觀看
⑽ 現在最好用的免費股票分析軟體是哪
你好( ^_^)/感謝你的邀請!
很多人問:免費的股票分析軟體真的好用嗎?答案是:市面上有好用的!只是你沒發現!
簡單點的,同花順旗下投資賬本APP,可以導入股票基金、定期存款,數據實時同步,分析近2年收益盈虧。
另外,分析股票走勢的方法很多,如下就常用的一些方法列舉出來:
技術分析:
1.看K線圖 股價是處於上升通道還是下跌通道?上升通道可以關注,但不要盲目追高,下跌通道不要碰。
2.看金叉死叉 當短期均線上穿中期或者長期均線時,形成最佳買點即金叉;短期均線下穿中期或者長期均線時,形成最佳賣點即死叉。這時再賣已有些下跌,因炒股軟體裡面的指 標有些滯後。
3.看量價關系 沒放量股價在微漲,說明主力在布局;在上升通道中,明顯放量但股價微跌,此時主力在盤整打壓散戶;放量逐漸加劇,此時拉高,主力快出貨了,不要盲目追漲。 後面劇烈放量股價並未漲就是主力悄悄出貨了。
基本面分析:
1.看公司有沒有重組消息?重組包含很多方面。
2.看公司是否有關聯交易?
3.看公司前期是否有虧損?
4.看上市公司產品是否屬於國家政策扶持還是打壓的?
5.看公司的盈利能力。 只要把以上的方法真正撐握了,你就是一個穩健的股票玩家了!但要注意炒股的心態!做短線,中線,長線完全看你個人的資金量了!
投資者炒股得掌握好一定的經驗和技巧,這樣才能分析出好的股票,平時得多看,多學,多做模擬盤,多和股壇老將們交流。吸收他們的經驗。
如果一個股民經常虧損,我建議他要反思,需要總結一套自己炒股盈利的方法,這樣炒股相對來說要穩妥得多,我現在也一直都在追蹤同花順投資賬本里的高手學習,感覺還是受益良多,願能幫助到你,祝投資愉快!