① KNN演算法,k近鄰
K最近鄰(k-Nearest Neighbour,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
② knn演算法的訓練數據集需要多大
這個不一定。之所以要分訓練集和測試集是因為怕過度擬合(overfitting),所以需要一個測試集來檢驗確定 你建立的模型並不只是適合於這一組數據。我一般都是70%訓練集30%測試集。當然,得看數據量有多大,以及復雜程度。只要訓練集>=測試集,就不會錯,但好不好得具體分析。如果數據量在1000以下的話,最好是k折交叉驗證(基本上只要不是特別復雜的數據,都推薦k折交叉驗證)。如果要是數據量大於10萬的話,最好考慮80:20甚至90:10。
③ knn演算法如何選擇一個最佳k值
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法中,所選擇的鄰居都是已經正確分類的對象。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。 KNN方法雖然從原理上也依賴於極限定理,但在類別決策時,只與極少量的相鄰樣本有關。由於KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。
KNN演算法不僅可以用於分類,還可以用於回歸。通過找出一個樣本的k個最近鄰居,將這些鄰居的屬性的平均值賦給該樣本,就可以得到該樣本的屬性。更有用的方法是將不同距離的鄰居對該樣本產生的影響給予不同的權值(weight),如權值與距離成正比。該演算法在分類時有個主要的不足是,當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本佔多數。 該演算法只計算「最近的」鄰居樣本,某一類的樣本數量很大,那麼或者這類樣本並不接近目標樣本,或者這類樣本很靠近目標樣本。無論怎樣,數量並不能影響運行結果。可以採用權值的方法(和該樣本距離小的鄰居權值大)來改進。
該方法的另一個不足之處是計算量較大,因為對每一個待分類的文本都要計算它到全體已知樣本的距離,才能求得它的K個最近鄰點。目前常用的解決方法是事先對已知樣本點進行剪輯,事先去除對分類作用不大的樣本。該演算法比較適用於樣本容量比較大的類域的自動分類,而那些樣本容量較小的類域採用這種演算法比較容易產生誤分。
④ 什麼是knn演算法
作為一種非參數的分類演算法,K-近鄰(KNN)演算法是非常有效和容易實現的。它已經廣泛應用於分類、回歸和模式識別等。在應用KNN演算法解決問題的時候,要注意兩個方面的問題——樣本權重和特徵權重。利用SVM來確定特徵的權重,提出了基於SVM的特徵加權演算法(FWKNN,feature weighted KNN)。實驗表明,在一定的條件下,FWKNN能夠極大地提高分類准確率。
⑤ KNN演算法小例子看不懂
你的理解是對的,也就是說,第一張圖錯誤,第二張圖正確。
⑥ 推薦演算法和KNN演算法的關系
knn演算法是推薦演算法的一種
整體思想比較簡單:計算一個點A與其他所有點之間的距離,取出與該點最近的k個點,然後統計這k個點裡面所屬分類比例最大的,則點A屬於該分類。
⑦ k-means演算法和knn演算法的區別
K均值聚類演算法即是HCM(普通硬-C均值聚類演算法),它是一種硬性劃分的方法,結果要麼是1要麼是0,沒有其他情況,具有「非此即彼」的性質。裡面的隸屬度矩陣是U。 FCM是把HCM演算法推廣到模糊情形,用在模糊性的分類問題上,給了隸屬度一個權重。
⑧ k-means和knn演算法的區別
K-means方法是一種非監督學習的演算法,它解決的是聚類問題。
KNN則是監督學習,是解決分類問題,具體異同如下圖:
⑨ K近鄰聚類演算法
推薦本書吧
Wiley - Pattern Classification, 2Ed.pdf
有中文版的但是不好找 上面很詳細 還包括其他演算法
⑩ 請簡述為什麼kNN演算法是懶惰的
kNN演算法,對於分類的不同屬性定義距離。對於一個新的待分類樣本點,只取k個與該樣本距離最近的點,然後找這k個點所歸屬的最多的類做為新樣本點的分類。由於只取k個點,不需要全部樣本點來做分類,所以說這個演算法懶惰。