㈠ 股票數據分析都有哪些
看盤的幾個小技巧:
第一:看盤的首要重點是看板塊和熱點個股的輪動規律,進而推測出行情的大小和持續性時間變化。比如每天應該注意是否有漲停個股開盤,如果有,那麼說明主力資金還在努力選擇突破口,如果兩市都有10隻以上的漲停個股開盤,則說明市場處於多頭氣氛,人氣比較旺,少於這個標准則說明市場人氣不佳,投資者應該當心大盤繼續下跌風險。如果每天盤面都有跌停板,並且是以板塊方式出現,那麼,應該警惕新一輪的中級調整開始。在熱點上,如果前一交易日漲停的個股或是上漲比較好的板塊難以維持兩天以上的行情,那麼,就說明主力資金屬於短炒性質,此個股或板塊不能成為一波行情的領頭羊,同時也意味著這一輪上漲屬於單日短線反彈。反過來講,如果熱點板塊每天都有2-3個以上,平均漲幅都在2%以上,並相互進行有效輪番上漲,則中期向好行情就值得期待。2010年7月初、中期,有色資源、煤炭資源、稀土資源以及新能源、智能電網等板塊交替上漲,從而產生中級行情。
第二:看盤應該注重關注成交量。根據兩市目前市值情況看,上海大盤成交量小於1000億應做震盪整理理解,700億以下為縮量,小於500億可以理解為地量,超過1100億應該理解為放量。地量背後往往意味著反轉,例如,2010年6月底和7月初之間,先後多個交易日上海股市成交量低於500億,這個時候空倉資金應為自己的重新進場做好准備。當大盤擺脫下降趨勢,走出一個緩慢的底部構築的形態下,成交量溫和狀態下,投資者可以以不超過半倉的水平買股持股。如果,當股票持續上漲,成交量放大,換手率超過15%(中小板、創業板個股特定條件下可以放寬到20%左右,另外新股、次新股、限售股、轉贈股、配股上市日不在此列),5-20日線開始死叉轉向,那麼此類短線題材股和概念股應該考慮逐步拋售。
第三:努力培養盤感,運用技術手段捕捉市場機會。不管是什麼品種的股票,如經過短期暴跌,跌幅超過50%,下跌垂直度越大,那麼關注價值就越高,當某一天突然縮量,短線買進的機會來了。因為急跌暴跌後,成交量突然萎縮就殺跌盤已經枯竭,肯定會出現反彈,這個時候可以堅決地戰勝自己恐慌情緒積極進去搶一把反彈就走人。同樣,如果股票價格在接連漲了很多時間,而且高位開始頻繁放量,可是價格始終盤旋在某個小區域,連續用小單在尾盤直線拉高製造高位串陽K線,籌碼峰密集嚴重擴散,則說明這個完全是主力在出貨!必須堅決清倉。
第四:別小看低位的三連陽,別漠視高位的三連陰。一般講股票價格在接連下跌一段時間後,突然在某天不那麼狂跌,而且,K線上接連出現紅三兵,價格波動幅度又不是那樣大,通常價格一串上去又被單子砸下來了,請你注意了,這個時候往往就是有主力潛伏著開始收貨中;反過來,如果在漲勢繼續了一段時間,股票價格已經很大幅度地脫離了主力原始成本,這個時候出現了高位幾連陰,股票價格重心開始下移,尤其是在一些時候,主力利用快要收盤的時候,突然用幾筆單把股票價格迅速買回日均線,在隨後的幾天里同樣的手法經常出現,K線圖上收出長下影,那說明主力出貨的概率已經達到80%以上,它的這些做法都是為了麻痹經驗不足的資金。假如某天連10日、20日、30日線都跌破,不管是賺還是賠,堅決離場。
第五:大漲買龍頭,如何發覺龍頭,其實在市場大跌氣氛里很容易判斷龍頭股,應密切注意漲幅榜中始終躍居前幾位的逆市紅盤股,特別是價格處於「三低」范疇,或是股價在15-20元之間,離新多主力拉升底部區域不足50%空間,在大盤大跌的當日或隨後幾天時間里,果斷用長陽反擊K線收復前期長陰失地的,則有望成為反彈的龍頭。市場的法則永遠是「強者恆強,弱者恆弱」。當中級以上行情出現的時候,投資者要善於提早發現誰是龍頭,並果斷追進,抓穩抓牢,別因一時盤面震盪輕易下馬。通常洗得越凶,後期飈漲概率越大。炒股搶佔先機概念很重要。有的股票難當龍頭最好在行情啟動初期果斷放棄,不要跟自己過不去。
第六:在漲勢中不要輕視冷門股、問題股。 你只要它漲得好,漲得牛就是,「漲時重勢,跌時重質」就是這個道理。任何時候,主力和莊家比我們聰明,他們不是傻瓜,當股票一個敢於在大勢不好的情況下縮量封出漲停板,肯定有其不被市場大眾知道的東西隱藏在後面。熊市裡,很多2-5元中小盤個股就是這樣無量快速漲停,通常這個時候非常考驗短線高手的看盤功力,因為這樣的股票往往留給人的思考、判斷、下單時間不會超過一分鍾,一般此類股很容易出現連續漲停,甚至是一字漲停,像2010年7月27日,很多ST股大跌的時候,ST黑化卻震盪走高,上方買盤都被逐步吃掉,並在臨近收盤的最後10分鍾封上漲停,這說明市場已有嗅覺靈敏的資金聞到了變盤氣息在重組前夜下手。
㈡ 求解回歸分析模型和股價變化之前的聯系
影響股票價格變動的因素
基本上可分為 以下三類:市場內部因素,基本面因素,政策因素。 (1)市場內部因素它主要是指市場的供給和需求, 即資金面和籌碼面的相對比例,如一定階段的股市擴 容節奏將成為該因素重要部分。(2)基本面因素 包括宏觀經濟因素和公司內部因素,宏觀經濟因素主 要是能影響市場中股票價格的因素,包括經濟增長, 經濟景氣循環,利率,財政收支,貨幣供應量,物價, 國際收支等,公司內部因素主要指公司的財務狀況。 (3)政策因素是指足以影響股票價格變動的國內外 重大活動以及政府的政策,措施,法令等重大事件, 政府的社會經濟發展計劃,經濟政策的變化,新頒布 法令和管理條例等均會影響到股價的變動
炒股,三個步驟:選股,買股,賣股。
三個步驟,都包括了一定的技術含量,掌握了這些技術,就可以在股市 收銀子了。
1、選股:一選行業,選擇國家和政策倡導的行業,例如目前的「五朵金花」,不要選擇國家正在治理的行業,例如「兩高一過」;二選股票,股票要選擇上述行業的行業龍頭公司的股票;三選價格,在選擇的股票價格相對低的時候,分批買入。
2、買股:按照一般跌幅3%左右價格買入,可以獲取可觀收益。
3、賣股:在獲利10%~20%的時候,賣出。
就這樣了。
㈢ 數據回歸分析的目的和意義是什麼
數據回歸分析的目的和意義是將一系列影響因素和結果進行一個擬合,擬合出一個方程,然後通過將這個方程應用到其他同類事件中,可以進行預測。
在統計學中,回歸分析指的是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析;按照因變數的多少,可分為簡單回歸分析和多重回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
大數據要分析的數據類型主要有四大類:
1、交易數據(TRANSACTION DATA)
大數據平台能夠獲取時間跨度更大、更海量的結構化交易數據,這樣就可以對更廣泛的交易數據類型進行分析,不僅僅包括POS或電子商務購物數據,還包括行為交易數據,例如Web伺服器記錄的互聯網點擊流數據日誌。
2、人為數據(HUMAN-GENERATED DATA)
非結構數據廣泛存在於電子郵件、文檔、圖片、音頻、視頻,以及通過博客、維基,尤其是社交媒體產生的數據流。這些數據為使用文本分析功能進行分析提供了豐富的數據源泉。
3、移動數據(MOBILE DATA)
能夠上網的智能手機和平板越來越普遍。這些移動設備上的App都能夠追蹤和溝通無數事件,從App內的交易數據(如搜索產品的記錄事件)到個人信息資料或狀態報告事件(如地點變更即報告一個新的地理編碼)。
4、機器和感測器數據(MACHINE AND SENSOR DATA)
這包括功能設備創建或生成的數據,例如智能電表、智能溫度控制器、工廠機器和連接互聯網的家用電器。這些設備可以配置為與互聯網路中的其他節點通信,還可以自動向中央伺服器傳輸數據,這樣就可以對數據進行分析。
㈣ 利用回歸分析的方法,計算該股票的貝塔值,並分析各月是否有較大的差異
文內容需要包括以下要點。
(
1
)
該股票過去五年日收益率、
日波動幅度、
交易量的總體及各年的描述性統
計(用平均值、中位數、標准差、離差等指標進行分析)
。
(
2
)
上證綜指過去五年日收益率、
日波動幅度、
交易量的總體及各年的描述性
統計(用平均值、中位數、標准差、離差等指標進行分析)
。
(
3
)
利用相關系數的統計方法,
分析該股票日收益率與上證綜指日收益率之間
的關系,並分析各年是否有較大的差異;
(
4
)
利用回歸分析的方法,
計算該股票的貝塔值,
並分析各年是否有較大的差
異;
(
5
)
利用相關系數的統計方法,
分析該股票日波動幅度與該股票的成交量的對
數之間的相關關系,並分析各年是否有較大的差異;
(
6
)
利用相關系數的統計方法,
分析該股票日波動幅度與上證綜指的日波動幅
度以及日成交量的對數之間的相關關系,並分析各年是否有較大的差異;
(
7
)
利用回歸分析的方法,分析該股票日波動幅度的影響因素;
(
8
)
對上述的問題進行綜合,總結股票的量價關系;
㈤ excel回歸分析 估計股票β
www.tipdm.cn,這是一個在線的數據分析軟體,對股票的回歸分析也有
㈥ 這是用股票收盤價形成的時間序列數據線性回歸模型,求大神幫忙進行回歸診斷!
還診斷啥 你看看那R-squared,這模型能用嗎 然後回歸系數也沒有通過顯著性檢驗
㈦ 股票數據分析方法
股票價格的漲跌,簡單來說,供求決定價格,買的人多價格就漲,賣的人多價格就跌。做成買賣不平行的原因是多方面的,影響股市的政策面、基本面、技術面、資金面、消息面等,是利空還是利多,升多了會有所調整,跌多了也會出現反彈,這是不變的規律。
㈧ 股票的貝塔系數怎麼算用excel的回歸分析
Cov(ra,rm) = ρamσaσm。
其中ρam為證券 a 與市場的相關系數;σa為證券 a 的標准差;σm為市場的標准差。
貝塔系數利用回歸的方法計算: 貝塔系數等於1即證券的價格與市場一同變動。
貝塔系數高於1即證券價格比總體市場更波動,貝塔系數低於1即證券價格的波動性比市場為低。
如果β = 0表示沒有風險,β = 0.5表示其風險僅為市場的一半,β = 1表示風險與市場風險相同,β = 2表示其風險是市場的2倍。
(8)股票數據的回歸分析擴展閱讀
金融學運用了貝塔系數來計算在一隻股票上投資者可期望的合理風險回報率: 個股合理回報率 =無風險回報率*+β×(整體股市回報率-無風險回報率) *可用基準債券的收益率代表。
貝塔系數=1,代表該個股的系統風險等同大盤整體系統風險,即受整體經濟因素影響的程度跟大盤一樣; 貝塔系數>1則代表該個股的系統風險高於大盤,即受整體經濟因素影響的程度甚於大盤。
貝塔系數越高,投資該股的系統風險越高,投資者所要求的回報率也就越高。高貝塔的股票通常屬於景氣循環股(cyclicals),如地產股和耐用消費品股;低貝塔的股票亦稱防禦類股(defensive stocks),其表現與經濟景氣的關聯度較低,如食品零售業和公用事業股。
個股的貝塔系數可能會隨著大盤的升或跌而變動,有些股票在跌市中可能會較在升市具更高風險。
㈨ 如何獲取金融數據 來做回歸分析
可以去資料庫里下載數據,如果資料庫需要付費賬號才能下載的話,可以推薦去上海證券交易所和深圳證券交易所的官網上下載股票相關數據。