❶ 如何用python對一系列股票的macd進行判斷
DIF:=EMA(CLOSE,12)-EMA(CLOSE,26);
DEA:=EMA(DIF,9);
MACD:=(DIF-DEA)*2;
忽略以上公式。
根據思路編寫公式,修改公式。盤中預警,條件選股。公式解密,去除時間限制。滑鼠點擊下方
我
的
名
字
或(圖
標)上,進入
可
看到
Q,訂
制
公式
❷ 如何利用Python預測股票價格
預測股票價格沒有意義。
單支股票價格,多股組合,大盤這些都可以使用神經網路來學習,02年就做過了,漲跌預測平均能達到54%到57%的准確率,但是只能定性,無法定量,因此,在扣除印花稅之後無利可圖。
純粹使用股票交易數據來預測並保證總體獲利不是程序能辦到的,人也辦不到。
目前世界上最先進的炒股機器也只能利用網路時差那微不可計的零點幾秒在歐洲與美國證券間倒來倒去,那套系統研發費用數千萬,硬體(主要是獨立光纜)費用以億計。
❸ 怎樣用python處理股票
用Python處理股票需要獲取股票數據,以國內股票數據為例,可以安裝Python的第三方庫:tushare;一個國內股票數據獲取包。可以在網路中搜索「Python tushare」來查詢相關資料,或者在tushare的官網上查詢說明文檔。
❹ Python 如何爬股票數據
現在都不用爬數據拉,很多量化平台能提供數據介面的服務。像比如基礎金融數據,包括滬深A股行情數據,上市公司財務數據,場內基金數據,指數數據,期貨數據以及宏觀經濟數據;或者Alpha特色因子,技術分析指標因子,股票tick數據以及網路因子數據這些數據都可以在JQData這種數據服務中找到的。
有的供應商還能提供level2的行情數據,不過這種比較貴,幾萬塊一年吧
❺ 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎
問題不對,你拿股票當工科看了,理工學院里可沒有一個股票分析專業。股票或者投資這行有兩個特點,1.
除了市場數據必看,沒有什麼理論必看。理論跟你實際操作相比是垃圾,這么說不過分;2.
實際能賺錢的經驗,沒有人會公開的。公開會導致失效,會引來對手盤,沒人會跟自己過不去。能賺錢的人基本也沒什麼興趣出書或教課。所以,別嫌給你澆冷水,
如果你想要書籍或者課程的話,就在理工類裡面挑一個接近投資的專業吧,比如
quants。自己沒方向的話,恐怕想求助也難。我是做這個的,但完全是自己摸索。Python
是自學,股票分析也是自己攢經驗值。我的博客或許能給你點啟發:
Jacky
Liu's
Blog
,
但最多是啟發而已。你得想出你自己的點子,然後自己去跟市場求證,謝謝
~
❻ 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎
個人覺得這問題問的不太對,說句不好的話,你是來搞編程的還是做股票的。
當然,如果題主只是用來搜集資料,看數據的話那還是可以操作一波的,至於python要怎麼入門,個人下面會推薦一些入門級的書籍,通過這些書籍,相信樓主今後會有一個清晰的了解(我們以一個完全不會編程的的新手來看待)。
《Learn Python The Hard Way》,也就是我們所說的笨辦法學python,這絕對是新手入門的第一選擇,裡面話題簡練,是一本以練習為導向的教材。有淺入深,而且易懂。
其它的像什麼,《Python源碼剖析》,《集體智慧編程》,《Python核心編程(第二版)》等題主都可以適當的選擇參讀下,相信都會對題主有所幫助。
最後,還是要重復上面的話題,炒股不是工程學科,它有太多的變數,對於現在的智能編程來說,它還沒有辦法及時的反映那些變數,所以,只能當做一種參考,千萬不可過渡依賴。
結語:pyhton相對來說是一種比較高端的學科,需要有很強的邏輯能力。所以入門是非常困難的,如果真的要學習,是需要很大的毅力去堅持下去的,而且不短時間就能入門了,要有所心理准備。
❼ python怎麼表示指數
其中有兩個非常漂亮的指數函數圖就是用python的matplotlib畫出來的。這一期,我們將要介紹如何利用python繪制出如下指數函數。
圖 1 a>1圖 1 a>1
我們知道當0 ,指數函數 是單調遞減的,當a>1 時,指數函數是單調遞增的。所以我們首先要定義出指數函數,將a值做不同初始化
import math
...
def exponential_func(x, a): #定義指數函數
y=math.pow(a, x)
return y
然後,利用numpy構造出自變數,利用上面定義的指數函數來計算出因變數
X=np.linspace(-4, 4, 40) #構造自變數組
Y=[exponential_func(x) for x in X] #求函數值
有了自變數和因變數的一些散點,那麼就可以模擬我們平時畫函數操作——描點繪圖,利用下面代碼就可以實現
import math
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist #導入坐標軸加工模塊
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
fig=plt.figure(figsize=(6,4)) #新建畫布
ax=axisartist.Subplot(fig,111) #使用axisartist.Subplot方法創建一個繪圖區對象ax
fig.add_axes(ax) #將繪圖區對象添加到畫布中
def exponential_func(x, a=2): #定義指數函數
y=math.pow(a, x)
return y
X=np.linspace(-4, 4, 40) #構造自變數組
Y=[exponential_func(x) for x in X] #求函數值
ax.plot(X, Y) #繪制指數函數
plt.show()
圖 2 a=2
圖2雖簡單,但麻雀雖小五臟俱全,指數函數該有都有,接下來是如何讓其看起來像我們在作圖紙上面畫的那麼美觀,這里重點介紹axisartist 坐標軸加工類,在的時候我們已經用過了,這里就不再多說了。我們只需要在上面代碼後面加上一些代碼來將坐標軸好好打扮一番。
圖 3 a>1 完整代碼# -*- coding: utf-8 -*-圖 3 a>1 完整代碼# -*- coding: utf-8 -*-"""Created on Sun Feb 16 10:19:23 2020project name:@author: 帥帥de三叔"""import mathimport numpy as npimport matplotlib.pyplot as pltimport mp
❽ 如何用python做回歸 判斷這個股票和股指間的關系
一個大項目的完成不是樓主以為的一天就能完成,通常會延續一年月乃至數年,看當時的風有多大了。所以去深究一天的盤口意義不是特別大。
大作手如果對大的基本面判斷失誤,籌碼、發動時機控制不好,鎖籌小夥伴背後捅刀子,走水出現大的老鼠倉,資金鏈出問題,碰到其他有錢任性的機構,老婆偷人槍殺兒子導致腦子短路等等雞飛狗跳的事情,項目做折掉,從莊家變股東的可能性也是非常大的,以億計的現金灰飛煙滅不過分分鍾的事情。
===============================================================
A股的死穴——要賺錢必須漲,做多是唯一出路。
做莊的基本原理:比如5元的標的,在底部拿夠籌碼,配合風信,能做多高做多高,比如做到50塊,然後就一路壓低賣下來,賣到15塊,乃至10塊。總有人覺得夠
便宜了會要的。
===============================================================
步驟1:做底倉,一般是先買到流通盤的30%。
具體做法就是在熊市末期,對著往上敲,然後虧本往下砸。賣1個,跟著會掉下來2-3個,接住。做底吸籌這個時間段有時會很長,視實際籌碼的收集情況和大盤走勢而定。
看下圖成交量,主力第一注就是下在中間偏左點的位置,進而不斷往震盪吸籌。那麼大的成交量,你總不會覺得是公眾交易者干出來的吧。
tip:標准底部的特徵就是脈沖式放量縮量,公眾交易者不參與任何震盪,切記。底部持續時間越長,籌碼控制越集中,以後上漲的高度越高,即所謂的橫有多長豎有多高。同時盡量挑選底部形態比較標準的標的,一年時間跨度以上的大圓弧底、復合頭肩、矩形底最好。越漂亮的走勢圖形控盤度越高,籌碼散亂的狀態下往往代表著多方博弈。
❾ 如何用python獲取股票數據
在Python的QSTK中,是通過s_datapath變數,定義相應股票數據所在的文件夾。一般可以通過QSDATA這個環境變數來設置對應的數據文件夾。具體的股票數據來源,例如滬深、港股等市場,你可以使用免費的WDZ程序輸出相應日線、5分鍾數據到s_datapath變數所指定的文件夾中。然後可使用Python的QSTK中,qstkutil.DataAccess進行數據訪問。