當前位置:首頁 » 分析預測 » 股票分析時序關聯規則
擴展閱讀
今日萬達股票價格表 2025-05-11 10:20:08
怎麼看股票一手多少股 2025-05-11 09:53:51
10萬元貸款利息 2025-05-11 09:24:10

股票分析時序關聯規則

發布時間: 2022-06-15 12:29:59

『壹』 幫忙翻譯個東西

說實話你拿出100分懸賞都不一定有人幫你

『貳』 股票9點30分成交順序

1、股票成交一般依次遵守這以下三個原則:時間優先、價格優先,數量優先。股票9點30分的成交順序為:
(1)較高買進限價申報優先於較低買進限價申報;較低賣出限價申報優先於較高賣出限價申報。
(2)同價位申報,依照申報時序決定優先順序。
(3)同價位申報,客戶委託申報優先於證券商自營買賣申報。
2、在股市開市,也就是9點30分時,證券商在接受客戶委託,填寫委託書後,應立即通知其在證券交易所的經紀人去執行委託。由於要買進或賣出同種證券的客戶都不只一家,故他們通過雙邊拍賣的方式來成交,也就是說,在交易過程,競爭同時發生在買者之間與賣者之間。 證券交易所內的雙邊拍賣主要有三種方式:即口頭競價交易、板牌競價交易、計算機終端申報競價。

『叄』 數據挖掘中的關聯規則主要有什麼作用

數據關聯是資料庫中存在的一類重要的可被發現的知識。若兩個或多個變數的取值之間存在某種規律性,就稱為關聯。關聯可分為簡單關聯、時序關聯、因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。有時並不知道資料庫中數據的關聯函數,即使知道也是不確定的,因此關聯分析生成的規則帶有可信度。關聯規則挖掘發現大量數據中項集之間有趣的關聯或相關聯系。Agrawal等於1993年首先提出了挖掘顧客交易資料庫中項集間的關聯規則問題,以後諸多的研究人員對關聯規則的挖掘問題進行了大量的研究。他們的工作包括對原有的演算法進行優化,如引入隨機采樣、並行的思想等,以提高演算法挖掘規則的效率;對關聯規則的應用進行推廣。關聯規則挖掘在數據挖掘中是一個重要的課題,最近幾年已被業界所廣泛研究。

『肆』 股票交易的價格優先,時間優先 怎麼理解

證券競價交易按價格優先、時間優先的原則撮合成交。
(1)成交時「價格優先」的原則為:較高價格買入申報優先於較低價格買入申報,較低價格賣出申報優先於較高價格賣出申報。
(2)成交時「時間優先」的原則為:買賣方向、價格相同的,先申報者優先於後申報者。先後順序按交易主機接受申報的時間確定。

『伍』 量化投資的主要方法和前沿進展

量化投資是通過計算機對金融大數據進行量化分析的基礎上產生交易決策機制。設計金融數學和計算機的知識和技術,主要有人工智慧、數據挖掘、小波分析、支持向量機、分形理論和隨機過程這幾種。
1.人工智慧
人工智慧(Artificial Intelligence,AI)是研究使用計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規劃等)的學科,主要包括計算機實現智能的原理、製造類似於人腦智能的計算機,使計算機能實現更高層次的應用。人工智慧將涉及計算機科學、心理學、哲學和語言學等學科,可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智慧與思維科學的關系是實踐和理論的關系,人工智慧是處於思維科學的技術應用層次,是它的一個應用分支。
從思維觀點看,人工智慧不僅限於邏輯思維,還要考慮形象思維、靈感思維才能促進人工智慧的突破性發展,數學常被認為是多種學科的基礎科學,因此人工智慧學科也必須借用數學工具。數學不僅在標准邏輯、模糊數學等范圍發揮作用,進入人工智慧學科後也能促進其得到更快的發展。
金融投資是一項復雜的、綜合了各種知識與技術的學科,對智能的要求非常高。所以人工智慧的很多技術可以用於量化投資分析中,包括專家系統、機器學習、神經網路、遺傳演算法等。
2.數據挖掘
數據挖掘(Data Mining)是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的,但又是潛在有用的信息和知識的過程。
與數據挖掘相近的同義詞有數據融合、數據分析和決策支持等。在量化投資中,數據挖掘的主要技術包括關聯分析、分類/預測、聚類分析等。
關聯分析是研究兩個或兩個以上變數的取值之間存在某種規律性。例如,研究股票的某些因子發生變化後,對未來一段時間股價之間的關聯關系。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。一般用支持度和可信度兩個閾值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。
分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,並用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的演算法而求得分類規則。分類可被用於規則描述和預測。
預測是利用歷史數據找出變化規律,建立模型,並由此模型對未來數據的種類及特徵進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。
聚類就是利用數據的相似性判斷出數據的聚合程度,使得同一個類別中的數據盡可能相似,不同類別的數據盡可能相異。
3.小波分析
小波(Wavelet)這一術語,顧名思義,小波就是小的波形。所謂「小」是指它具有衰減性;而稱之為「波」則是指它的波動性,其振幅正負相間的震盪形式。與傅里葉變換相比,小波變換是時間(空間)頻率的局部化分析,它通過伸縮平移運算對信號(函數)逐步進行多尺度細化,最終達到高頻處時間細分,低頻處頻率細分,能自動適應時頻信號分析的要求,從而可聚焦到信號的任意細節,解決了傅里葉變換的困難問題,成為繼傅里葉變換以來在科學方法上的重大突破,因此也有人把小波變換稱為數學顯微鏡。
小波分析在量化投資中的主要作用是進行波形處理。任何投資品種的走勢都可以看做是一種波形,其中包含了很多噪音信號。利用小波分析,可以進行波形的去噪、重構、診斷、識別等,從而實現對未來走勢的判斷。
4.支持向量機
支持向量機(Support Vector Machine,SVM)方法是通過一個非線性映射,把樣本空間映射到一個高維乃至無窮維的特徵空間中(Hilbert空間),使得在原來的樣本空間中非線性可分的問題轉化為在特徵空間中的線性可分的問題,簡單地說,就是升維和線性化。升維就是把樣本向高維空間做映射,一般情況下這會增加計算的復雜性,甚至會引起維數災難,因而人們很少問津。但是作為分類、回歸等問題來說,很可能在低維樣本空間無法線性處理的樣本集,在高維特徵空間中卻可以通過一個線性超平面實現線性劃分(或回歸)。
一般的升維都會帶來計算的復雜化,SVM方法巧妙地解決了這個難題:應用核函數的展開定理,就不需要知道非線性映射的顯式表達式;由於是在高維特徵空間中建立線性學習機,所以與線性模型相比,不但幾乎不增加計算的復雜性,而且在某種程度上避免了維數災難。這一切要歸功於核函數的展開和計算理論。
正因為有這個優勢,使得SVM特別適合於進行有關分類和預測問題的處理,這就使得它在量化投資中有了很大的用武之地。
5.分形理論
被譽為大自然的幾何學的分形理論(Fractal),是現代數學的一個新分支,但其本質卻是一種新的世界觀和方法論。它與動力系統的混沌理論交叉結合,相輔相成。它承認世界的局部可能在一定條件下,在某一方面(形態、結構、信息、功能、時間、能量等)表現出與整體的相似性,它承認空間維數的變化既可以是離散的也可以是連續的,因而極大地拓展了研究視野。
自相似原則和迭代生成原則是分形理論的重要原則。它表示分形在通常的幾何變換下具有不變性,即標度無關性。分形形體中的自相似性可以是完全相同的,也可以是統計意義上的相似。迭代生成原則是指可以從局部的分形通過某種遞歸方法生成更大的整體圖形。
分形理論既是非線性科學的前沿和重要分支,又是一門新興的橫斷學科。作為一種方法論和認識論,其啟示是多方面的:一是分形整體與局部形態的相似,啟發人們通過認識部分來認識整體,從有限中認識無限;二是分形揭示了介於整體與部分、有序與無序、復雜與簡單之間的新形態、新秩序;三是分形從一特定層面揭示了世界普遍聯系和統一的圖景。
由於這種特徵,使得分形理論在量化投資中得到了廣泛的應用,主要可以用於金融時序數列的分解與重構,並在此基礎上進行數列的預測。
6.隨機過程
隨機過程(Stochastic Process)是一連串隨機事件動態關系的定量描述。隨機過程論與其他數學分支如位勢論、微分方程、力學及復變函數論等有密切的聯系,是在自然科學、工程科學及社會科學各領域中研究隨機現象的重要工具。隨機過程論目前已得到廣泛的應用,在諸如天氣預報、統計物理、天體物理、運籌決策、經濟數學、安全科學、人口理論、可靠性及計算機科學等很多領域都要經常用到隨機過程的理論來建立數學模型。
研究隨機過程的方法多種多樣,主要可以分為兩大類:一類是概率方法,其中用到軌道性質、隨機微分方程等;另一類是分析的方法,其中用到測度論、微分方程、半群理論、函數堆和希爾伯特空間等,實際研究中常常兩種方法並用。另外組合方法和代數方法在某些特殊隨機過程的研究中也有一定作用。研究的主要內容有:多指標隨機過程、無窮質點與馬爾科夫過程、概率與位勢及各種特殊過程的專題討論等。
其中,馬爾科夫過程很適於金融時序數列的預測,是在量化投資中的典型應用。
現階段量化投資在基金投資方面使用的比較多,也有部分投資機構合券商的交易系統應用了智能選股的技術。

『陸』 股票交易,什麼叫:價格優先、時間優先。

國際接軌 莊家作用小交易時間長 全天22小時可以交易 炒金上班兩不誤

『柒』 關於股票成交順序

股票成交一般依次遵守這以下三個原則:時間優先、價格優先,數量優先。由於你時間上比他優先,又由於你採用的是市價最優五檔的委託方式。
證券交易所內的雙邊拍賣主要有三種方式:即口頭競價交易、板牌競價交易、計算機終端申報競價。
成交的先後順序
(1)較高買進限價申報優先於較低買進限價申報;較低賣出限價申報優先於較高賣出限價申報。
(2)同價位申報,依照申報時序決定優先順序。
(3)同價位申報,客戶委託申報優先於證券商自營買賣申報。
成交價格的決定原則:最高買入申報與最低賣出申報優先成交。
明白了嗎?

『捌』 股票交易的三優先原則

價格優先是指任意兩筆委託單做比較,當進來時間一樣時,誰買價高、誰賣價低,優先讓他成交。時間優先,同價位的申報,依照申報時序決定優先順序。同樣是10塊錢買股票,先申報要買的人先買進,同理,同樣是10塊錢賣股票,先申報要賣的人先賣出。數量優先是競價原則之一。
拓展資料:
股票交易是股票的買賣。股票交易主要有兩種形式,一種是通過證券交易所買賣股票,稱為場內交易;另一種是不通過證券交易所買賣股票,稱為場外交易。大部分股票都是在證券交易所內買賣,場外交易只是以美國比較完善,其它國家要麼沒有、要麼是處於萌芽階段,股票交易(場內交易)的主要過程有:開設帳戶,顧客要買賣股票,應首先找經紀人公司開設帳戶。傳遞指令,開設帳戶後,顧客就可以通過他的經紀人買賣股票。每次買賣股票,顧客都要給經紀人公司買賣指令,該公司將顧客指令迅速傳遞給它在交易所里的經紀人,由經紀人執行。成交過程,交易所里的經紀人一接到指令,就迅速到買賣這種股票的交易站(在交易廳內,去執行命令。交割,買賣股票成交後,買主付出現金取得股票,賣主交出股票取得現金。
交割手續有的是成交後進行,有的則在一定時間內,如幾天至幾十天完成,通過清算公司辦理。過戶,交割完畢後,新股東應到他持有股票的發行公司辦理過戶手續,即在該公司股東名冊上登記他自己的名字及持有股份數等。完成這個步驟,股票交易即算最終完成。股票發行是指符合條件的發行人按照法定的程序,向投資人出售股份、募集資金的過程。股份公司發行的股票,在經有關部門批准後,就可以在股票市場公開掛牌進行上市交易活動。股票要上市交易必須具備一定的條件,並按一定的原則和程序進行操作與運轉。新股民要做的第一件事就是為自己開立一個股票帳戶(即股東卡)。股票帳戶相當於一個「銀行戶頭」,投資者只有開立了股票帳戶才可進行證_買賣。

『玖』 誰有金融數據挖掘,關聯規則分析與挖掘的一些介紹啊

接分啦。。。找到一篇不錯的文章
樓主看下,參考資料:http://blog.csdn.net/ctu_85/archive/2008/09/16/2937486.aspx
2.關聯規則挖掘過程、分類及其相關演算法
2.1關聯規則挖掘的過程
關聯規則挖掘過程主要包含兩個階段:第一階段必須先從資料集合中找出所有的高頻項目組(Frequent Itemsets),第二階段再由這些高頻項目組中產生關聯規則(Association Rules)。
關聯規則挖掘的第一階段必須從原始資料集合中,找出所有高頻項目組(Large Itemsets)。高頻的意思是指某一項目組出現的頻率相對於所有記錄而言,必須達到某一水平。一項目組出現的頻率稱為支持度(Support),以一個包含A與B兩個項目的2-itemset為例,我們可以經由公式(1)求得包含{A,B}項目組的支持度,若支持度大於等於所設定的最小支持度(Minimum Support)門檻值時,則{A,B}稱為高頻項目組。一個滿足最小支持度的k-itemset,則稱為高頻k-項目組(Frequent k-itemset),一般表示為Large k或Frequent k。演算法並從Large k的項目組中再產生Large k+1,直到無法再找到更長的高頻項目組為止。
關聯規則挖掘的第二階段是要產生關聯規則(Association Rules)。從高頻項目組產生關聯規則,是利用前一步驟的高頻k-項目組來產生規則,在最小信賴度(Minimum Confidence)的條件門檻下,若一規則所求得的信賴度滿足最小信賴度,稱此規則為關聯規則。例如:經由高頻k-項目組{A,B}所產生的規則AB,其信賴度可經由公式(2)求得,若信賴度大於等於最小信賴度,則稱AB為關聯規則。
就沃爾馬案例而言,使用關聯規則挖掘技術,對交易資料庫中的紀錄進行資料挖掘,首先必須要設定最小支持度與最小信賴度兩個門檻值,在此假設最小支持度min_support=5% 且最小信賴度min_confidence=70%。因此符合此該超市需求的關聯規則將必須同時滿足以上兩個條件。若經過挖掘過程所找到的關聯規則「尿布,啤酒」,滿足下列條件,將可接受「尿布,啤酒」的關聯規則。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%於此應用範例中的意義為:在所有的交易紀錄資料中,至少有5%的交易呈現尿布與啤酒這兩項商品被同時購買的交易行為。Confidence(尿布,啤酒)>=70%於此應用範例中的意義為:在所有包含尿布的交易紀錄資料中,至少有70%的交易會同時購買啤酒。因此,今後若有某消費者出現購買尿布的行為,超市將可推薦該消費者同時購買啤酒。這個商品推薦的行為則是根據「尿布,啤酒」關聯規則,因為就該超市過去的交易紀錄而言,支持了「大部份購買尿布的交易,會同時購買啤酒」的消費行為。
從上面的介紹還可以看出,關聯規則挖掘通常比較適用與記錄中的指標取離散值的情況。如果原始資料庫中的指標值是取連續的數據,則在關聯規則挖掘之前應該進行適當的數據離散化(實際上就是將某個區間的值對應於某個值),數據的離散化是數據挖掘前的重要環節,離散化的過程是否合理將直接影響關聯規則的挖掘結果。
2.2關聯規則的分類
按照不同情況,關聯規則可以進行分類如下:
1.基於規則中處理的變數的類別,關聯規則可以分為布爾型和數值型。
布爾型關聯規則處理的值都是離散的、種類化的,它顯示了這些變數之間的關系;而數值型關聯規則可以和多維關聯或多層關聯規則結合起來,對數值型欄位進行處理,將其進行動態的分割,或者直接對原始的數據進行處理,當然

『拾』 股票交易9:25分至9:30分之間連續競價是以時間優先成交還是價格優先成交我9:28分申報4.7

9點25以後都算連續競價。集合競價的價格和你無關。集合競價是按成交量最大原則。你這應該是瞬間跌到71然後又拉起來了,別人優先成交,你沒買入