㈠ 國外量化策略(程序化交易策略)如何獲取
獲取了也沒啥意思,我自己就是編策略程序的,我設計的時候既用到了金融工程知識,又用到了通訊語音分析技術,還用了交叉語言混合編程,我想即使有個把黑客破解了我的源代碼,他沒有其他先驗知識,恐怕也看不懂我編的策略吧。國外策略軟體也是同理呀,料你看了也不能咋地。
㈡ 股票量化交易是什麼
量化交易個以前的股票交易本質沒有區別,只是提高了工作效率,
量化交易分為量化分析和程序化自動交易
量化分析,如果你是普通散戶我現在問幾個問題,第一MACD指標默認參數下,在三千多隻股票日k上近兩年那隻收益最好,那隻虧損最大。這要人工多大的工作量,如果會寫程序代碼,幾行代碼就解決了。在繼續如果調換MACD參數能否增加收益用那幾個參數是最優組合,這要是人工基本無法完成,計算量太大了,但計算機就很快完成了參數優化。
而且量化分析不是技術分析,例如你問一個價值投資者,三千多家上市公司,你知道有多少家連續10年都沒虧損過嗎,同樣幾行代碼就知道。
假如你聽了一個老師的講課,說他的牛x戰法,普散戶聽了你只能價單試試,但量化分析我可以在不同市場不同時間周期,不同品種,進行回測嚴重,優化。這些就是量化分析。
程序化自動交易。
就是利用計算機技術自動交易,這對於散戶比較難實現,簡單的用第三方然間寫幾個交易策略可以實現自動交易。
但當你交易上你就會發現,滑點問題,你的速度不夠快,需要專線網路,需要底層語言的交易系統,高速的硬體設備。
但散戶還是必須要進行量化學習因為這樣才能更好的幫助你分析。
下圖就是最簡單的趨勢指標
㈢ 量化交易主要有哪些經典的策略
主要就是波浪理論在結合成交量的變化來具體探討股價是處於上升趨勢當中還是下跌的趨勢當中
㈣ 量化交易領域有哪些經典策略
量化交易種比較受寬客們所熟知的量化經典策略有:
alpha對沖(股票+期貨)
集合競價選股(股票)
多因子選股(股票)
網格交易(期貨)
指數增強(股票)
跨品種套利(期貨)
跨期套利(期貨)
日內回轉交易(股票)
做市商交易(期貨)
海龜交易法(期貨)
行業輪動(股票)
機器學習(股票)
以上這些經典的量化交易策略源碼都可以到掘金量化交易平台查閱。
㈤ 股票量化交易策略
你好,這是很有價值的量化策略勒。相對來說量化交易是比較穩健的避免人為情緒的交易模式。
㈥ 想做一個通達信股票全自動程序化交易程序,求幫助。
你自己做不到的,你可以致電通達信定製,但價格有不菲的.
㈦ 股票量化交易策略是什麼意思
股市是一門經濟學,哲學,概率學,心理學的綜合體,想要成功,需要不斷去感悟去總結每一次的失敗,這樣才能走的更好更遠。
第一個理念:
順勢而為
股市的大趨勢決定個股的走勢,當指數大漲時個股更容易爆發,這個時候適合重倉介入,當然要注意獲利就出;當市場處於弱勢時,就要考慮輕倉介入,不盲目追漲。
第二個理念:
選定有價值的公司
在投資中,選定有價值的公司很重要,因為這些公司有很強的上漲潛力,一旦市場有好的信號,或者公司有大利好時,股價就會飛速上漲,所以這樣的公司更容易讓普通股民賺到錢。
第三個理念:
分批建倉 堅持到底
在投資中,投資者要住的是要做好投資策略,一般的策略就是分批建倉,在市場下跌時以倒金字塔形態建倉,在市場上漲時,以金字塔形態減倉。如果股票短期被套,市場情況還可以的話,則要選擇堅持持倉。
天字一號量化交易系統通過設定不同的各種指標條件,一旦市場交易情況滿足這些條件時就自動彈出一些操作指示;設定值達到開倉條件,系統會彈出買入信號、設定值達到減倉條件賣出一半或者全部賣出等。
㈧ 股票交易策略具體有哪些
股票交易策略常見的是趨勢型策略,通俗說,就是追漲殺跌。從眾心理是趨勢的主要基礎。趨勢也是股市運行的最明顯特徵。雖然牛市即具有明顯上漲趨勢的時間只佔總時間的15%左右,但由於它的特徵顯著,還是受到眾多的投資者偏愛。CMC Markets提醒交易者,股票交易策略是一種在理想模型中抽象概括出的東西。在實際中,大可不必說只用一種基本策略。把不同的策略組合進一個交易系統一般能得到更好的甚至是出奇好的效果穩定盈利是一種境界。
㈨ 股票裡面的量化是什麼意思
股票裡面的量化指的是用先進的數學模型代替主觀判斷,然後從龐大的歷史數據中海選能帶來超額收益的情況以制定策略,隨後用數量模型驗證及固化這些規律和策略。此外,量化交易是指利用統計學,數學,計算機技術和現代的金融理論,來輔助投資者更好地盈利。
拓展資料
一、常見的十大量化投資策略
01、海龜交易策略
海龜交易策略是一套非常完整的趨勢跟隨型的自動化交易策略。這個復雜的策略在入場條件、倉位控制、資金管理、止損止盈等各個環節,都進行了詳細的設計,這基本上可以作為復雜交易策略設計和開發的模板。
02、阿爾法策略
阿爾法的概念來自於二十世紀中葉,經過學者的統計,當時約75%的股票型基金經理構建的投資組合無法跑贏根據市值大小構建的簡單組合或是指數,屬於傳統的基本面分析策略。
在期指市場上做空,在股票市場上構建擬合300指數的成份股,賺取其中的價差,這種被動型的套利就是貝塔套利。
03、多因子選股
多因子模型是量化選股中最重要的一類模型,基本思想是找到某些和收益率最相關的指標,並根據該指標,構建一個股票組合,期望該組合在未來的一段時間跑贏或跑輸指數。如果跑贏,則可以做多該組合,同時做空期指,賺取正向阿爾法收益;如果是跑輸,則可以組多期指,融券做空該組合,賺取反向阿爾法收益。多因子模型的關鍵是找到因子與收益率之間的關聯性。
04、雙均線策略
雙均線策略,通過建立m天移動平均線,n天移動平均線,則兩條均線必有交點。若m>n,n天平均線「上穿越」m天均線則為買入點,反之為賣出點。該策略基於不同天數均線的交叉點,抓住股票的強勢和弱勢時刻,進行交易。
雙均線策略中,如果兩根均線的周期接近,比如5日線,10日線,這種非常容易纏繞,不停的產生買點賣點,會有大量的無效交易,交易費用很高。如果兩根均線的周期差距較大,比如5日線,60日線,這種交易周期很長,趨勢性已經不明顯了,趨勢轉變以後很長時間才會出現買賣點。也就是說可能會造成很大的虧損。所以兩個參數選擇的很重要,趨勢性越強的品種,均線策略越有效。
05、行業輪動
行業輪動是利用市場趨勢獲利的一種主動交易策略其本質是利用不同投資品種強勢時間的錯位對行業品種進行切換以達到投資收益最大化的目的。
06、跨品種套利
跨品種套利指的是利用兩種不同的、但相關聯的指數期貨產品之間的價差進行交易。這兩種指數之間具有相互替代性或受同一供求因素制約。跨品種套利的交易形式是同時買進和賣出相同交割月份但不同種類的股指期貨合約。主要有相關商品間套利和原料與成品之間套利。
跨品種套利的主要作用一是幫助扭曲的市場價格回復到正常水平;二是增強市場的流動性。
07、指數增強
增強型指數投資由於不同基金管理人描述其指數增強型產品的投資目的不盡相同,增強型指數投資並無統一模式,唯一共同點在於他們都希望能夠提供高於標的指數回報水平的投資業績。為使指數化投資名副其實,基金經理試圖盡可能保持標的指數的各種特徵。
08、網格交易
網格交易是利用市場震盪行情獲利的一種主動交易策略,其本質是利用投資標的在一段震盪行情中價格在網格區間內的反復運動以進行加倉減倉的操作以達到投資收益最大化的目的。通俗點講就是根據建立不同數量,不同大小的網格,在突破網格的時候建倉,回歸網格的時候減倉,力求能夠捕捉到價格的震盪變化趨勢,達到盈利的目的。
09、跨期套利
跨期套利是套利交易中最普遍的一種,是股指期貨的跨期套利(Calendar Spread Arbitrage)即為在同一交易所進行同一指數、但不同交割月份的套利活動。
10、高頻交易策略
高頻交易是指從那些人們無法利用的極為短暫的市場變化中尋求獲利的計算機化交易,比如,某種證券買入價和賣出價差價的微小變化,或者某隻股票在不同交易所之間的微小價差。這種交易的速度如此之快,以至於有些交易機構將自己的「伺服器群組」安置到了離交易所的計算機很近的地方,以縮短交易指令通過光纜以光速旅行的距離。(該策略源碼模板暫無)
㈩ 量化交易主要有什麼經典的策略
您好
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。