當前位置:首頁 » 股市行情 » garch模型能預測股票價格嗎
擴展閱讀
股票可以買自己掛單的嗎 2025-06-26 03:22:18
大中型企業標准 2025-06-26 03:22:18

garch模型能預測股票價格嗎

發布時間: 2021-07-24 10:24:32

① 如何用garch模型 預測出今後一個月的股票價格

模型在中國不行,國外的可以但也並不穩定,主要都是操盤手作怪

② 如何用GARCH(1,1)求股票的具體波動率數據

以哈飛股份(600038)為例,運用GARCH(1,1)模型計算股票市場價值的波動率。

GARCH(1,1)模型為:

(1)

(2)

其中, 為回報系數, 為滯後系數, 和 均大於或等於0。

(1)式給出的均值方程是一個帶有誤差項的外生變數的函數。由於是以前面信息為基礎的一期向前預測方差,所以稱為條件均值方程。

(2)式給出的方程中: 為常數項, (ARCH項)為用均值方程的殘差平方的滯後項, (GARCH項)為上一期的預測方差。此方程又稱條件方差方程,說明時間序列條件方差的變化特徵。

通過以下六步進行求解:

本文選取哈飛股份2009年全年的股票日收盤價,採用Eviews 6.0的GARCH工具預測股票收益率波動率。具體計算過程如下:

第一步:計算日對數收益率並對樣本的日收益率進行基本統計分析,結果如圖1和圖2。

日收益率採用JP摩根集團的對數收益率概念,計算如下:

其中Si,Si-1分別為第i日和第i-1日股票收盤價。

圖1 日收益率的JB統計圖

對圖1日收益率的JB統計圖進行分析可知:

(1)標准正態分布的K值為3,而該股票的收益率曲線表現出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大於正態分布,說明存在著較為明顯的「尖峰厚尾」形態;

(2)偏度值與0有一定的差別,序列分布有長的左拖尾,拒絕均值為零的原假設,不屬於正態分布的特徵;

(3)該股票的收益率的JB統計量大於5%的顯著性水平上的臨界值5.99,所以可以拒絕其收益分布正態的假設,並初步認定其收益分布呈現「厚尾」特徵。

以上分析證明,該股票收益率呈現出非正態的「尖峰厚尾」分布特徵,因此利用GARCH模型來對波動率進行擬合具有合理性。

第二步:檢驗收益序列平穩性

在進行時間序列分析之前,必須先確定其平穩性。從圖2日收益序列的路徑圖來看,有比較明顯的大的波動,可以大致判斷該序列是一個非平穩時間序列。這還需要嚴格的統計檢驗方法來驗證,目前流行也是最為普遍應用的檢驗方法是單位根檢驗,鑒於ADF有更好的性能,故本文採用ADF方法檢驗序列的平穩性。

從表1可以看出,檢驗t統計量的絕對值均大於1%、5%和10%標准下的臨界值的絕對值,因此,序列在1%的顯著水平下拒絕原假設,不存在單位根,是平穩序列,所以利用GARCH(1,1)模型進行檢驗是有效的。

圖2 日收益序列圖

表1ADF單位根檢驗結果

第三步:檢驗收益序列相關性

收益序列的自相關函數ACF和偏自相關函數PACF以及Ljung-Box-Pierce Q檢驗的結果如表3(滯後階數 =15)。從表4.3可以看出,在大部分時滯上,日收益率序列的自相關函數和偏自相關函數值都很小,均小於0.1,表明收益率序列並不具有自相關性,因此,不需要引入自相關性的描述部分。Ljung-Box-Pierce Q檢驗的結果也說明日收益率序列不存在明顯的序列相關性。

表2自相關檢驗結果

第四步:建立波動性模型

由於哈飛股份收益率序列為平穩序列,且不存在自相關,根據以上結論,建立如下日收益率方程:

(3)

(4)

第五步:對收益率殘差進行ARCH檢驗

平穩序列的條件方差可能是常數值,此時就不必建立GARCH模型。故在建模前應對收益率的殘差序列εt進行ARCH檢驗,考察其是否存在條件異方差,收益序列殘差ARCH檢驗結果如表3。可以發現,在滯後10階時,ARCH檢驗的伴隨概率小於顯著性水平0.05,拒絕原假設,殘差序列存在條件異方差。在條件異方差的理論中,滯後項太多的情況下,適宜採用GARCH(1,1)模型替代ARCH模型,這也說明了使用GARCH(1,1)模型的合理性。

表3日收益率殘差ARCH檢驗結果

第六步:估計GARCH模型參數,並檢驗

建立GARCH(1,1)模型,並得到參數估計和檢驗結果如表4。其中,RESID(-1)^2表示GARCH模型中的參數α,GARCH(-1)表示GARCH模型中的參數β,根據約束條件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,滿足約束條件。同時模型中的AIC和SC值比較小,可以認為該模型較好地擬合了數據。

表4日收益率波動率的GARCH(1,1)模型的參數估計

③ 求助,garch模型做預測的問題

因為GARCH模型中含有AR項,靜態預測是利用滯後因變數的實際值進行預測;而動態預測則是利用之後因變數的預測值進行預測。使用的話一是在操作的時候點擊static或者dynamic;二是在編程的時候選用fit(靜態)或是forecast(動態)

④ 現在都有哪些股票價格預測的模型和演算法

股票價格無法用模型和演算法預測 可以預測的只有趨勢和方向
形態滿足的價格預測只有V型反轉一個

⑤ garch模型能預測股票價格波動率嗎

我認為不大可能

⑥ 預測股票的方法有幾種

1、股票價格的預測要綜合考慮多種因素,比如公司的基本面、日K線、周K線、月K線、成交量、各種技術指標等等。股票買了就漲是許多人夢寐以求的事情,其實,盤中判斷股價會不會拉升並不是「可『想』不可求」的事情,是通過長期看盤、操盤實踐可以達到或者部分達到的境界。其中一個重要方法是「結合技術形態研判量能變化」,尤其是研判有無增量資金。
2、股票預測公式和方法是:
如果當天量能盤中預測結果明顯大於上一天的量能,增量達到一倍以上,出現增量資金的可能性較大。股票預測首先要預測全天可能出現的成交量。公式是(240分鍾÷前市9:30分到看盤時為止的分鍾數)×已有成交量(成交股數)。使用這個公式時要注意:
(1)往往時間越是靠前,離開9:30分越近,越是偏大於當天的實際成交量。
(2)一般採用前15分鍾、30分鍾、45分鍾等三個時段的成交量來預測全天的成交量。過早則失真,因為開盤不久成交偏大偏密集;過晚則失去了預測的意義。

⑦ GARCH模型測股票波動性需要什麼數據

你只需下載股票每日歷史價位就可以了。比方說你下載的是每日開盤價(用每日均價也是可以的),記為S1,S2, S3。。。然後,你需要把這些數字轉換成價格日變化率,即(S2-S1)/S1, (S3-S2)/S2,...等等,然後把這組變化率數據導入Eviews, 按下面鏈接頁面的步驟操作就可以,很容易的。
http://perso.fundp.ac.be/~mpetijea/MyEviews/Clips/clip17.html
加油。

⑧ garch模型 怎麼預測未來具體值我用sas 和eviews都只會得出模型 不會預測未來值~~

EVIEWS能出來具體數值,如果你預測的是y,一般他會在yf里,你也可以自己定義變數的,看看你有沒有

⑨ 股票價格可以預測嗎

股票價格預測

理論上股票價格是可以預測的,實際上都是只是聽說,而從未被證實(比如江恩理論中說道可以預測到具體的價格)但實際也是聽說,如果要說親眼看見的話,我只看到過用易經預測真可以看見漲到具體價格。但不是每次。

價格在支撐位、壓力位這都是人為附加理論。認同者則有用,沒有這個概念的人那管他支撐壓力只要經過分析加和經驗認為它要漲就進。當然同時也要根據大盤行情,結合指標,經驗一起下結論。盲目進倉那是韭菜送肉行為。

雖然價格不可測,但是漲或者跌卻是絕對的可以預測的,只是掌握它的人不說,悶頭收割,那有時間閑扯。

⑩ 計量經濟學可以預測股票嗎

計量經濟學是可以預測股票的,不過要是做股票的話,還是你專業的學生知識,或者是網路一些有用的知識啊,或者是請教他人。