『壹』 LSTM timestep設為1是不是就和普通BP神經網路做時間序列預測沒有區別
可以先根據經驗設置一個目標維度 降維後 計算降維後的相關系數矩陣 並繪制heatmap 將相關系數在指定閾值以上的特徵丟掉 再次降維 反復進行
也可以降到目標維度後 向三維或者二維做投影 藉助人類視覺 選擇合適的
『貳』 如何在python中用lstm網路進行時間序列預測
時間序列建模器 圖表那個選項卡 左下勾選 擬合值 就可以了。我的為什麼不出現預測值啊啊啊啊~~
『叄』 如何調用訓練好的lstm網路去預測新的輸入
LSTM效果很好,不過很多時候我們更願意用GRU來替換之。很多論文都比較過兩者的學習效果,是不相上下的。但是GRU的構造更簡單:比LSTM少一個gate,這樣就少幾個矩陣乘法。在訓練數據很大的情況下GRU能節省很多時間。
『肆』 arima模型python 怎麼看平穩性
時間序列分析(一) 如何判斷序列是否平穩
序列平穩不平穩,一般採用兩種方法:
第一種:看圖法
圖是指時序圖,例如(eviews畫滴):
分析:什麼樣的圖不平穩,先說下什麼是平穩,平穩就是圍繞著一個常數上下波動。
看看上面這個圖,很明顯的增長趨勢,不平穩。
第二種:自相關系數和偏相關系數
還以上面的序列為例:用eviews得到自相關和偏相關圖,Q統計量和伴隨概率。
分析:判斷平穩與否的話,用自相關圖和偏相關圖就可以了。
平穩的序列的自相關圖和偏相關圖不是拖尾就是截尾。截尾就是在某階之後,系數都為 0 ,怎麼理解呢,看上面偏相關的圖,當階數為 1 的時候,系數值還是很大, 0.914. 二階長的時候突然就變成了 0.050. 後面的值都很小,認為是趨於 0 ,這種狀況就是截尾。再就是拖尾,拖尾就是有一個衰減的趨勢,但是不都為 0 。
自相關圖既不是拖尾也不是截尾。以上的圖的自相關是一個三角對稱的形式,這種趨勢是單調趨勢的典型圖形。
下面是通過自相關的其他功能
如果自相關是拖尾,偏相關截尾,則用 AR 演算法
如果自相關截尾,偏相關拖尾,則用 MA 演算法
如果自相關和偏相關都是拖尾,則用 ARMA 演算法, ARIMA 是 ARMA 演算法的擴展版,用法類似 。
不平穩,怎麼辦?
答案是差分
還是上面那個序列,兩種方法都證明他是不靠譜的,不平穩的。確定不平穩後,依次進行1階、2階、3階...差分,直到平穩位置。先來個一階差分,上圖。
從圖上看,一階差分的效果不錯,看著是平穩的。
『伍』 lstm預測多輸入多輸出
網路「6 種用 LSTM 做時間序列預測的模型結構」 有方案
不過也要看是什麼框架,每種框架寫法未必一樣
『陸』 lstm回歸和分類可否一起做
當然可以,用LSTM做預測也是很常見的。你就用網路搜一下唄,相關介紹很多的。
『柒』 lstm做交通預測的輸入輸出是什麼樣的
間序列預測分析就是利用過去一段時間內某事件時間的特徵來預測未來一段時間內該事件的特徵。這是一類相對比較復雜的預測建模問題,和回歸分析模型的預測不同,時間序列模型是依賴於事件發生的先後順序的,同樣大小的值改變順序後輸入模型產生的結果是不同的。
舉個栗子:根據過去兩年某股票的每天的股價數據推測之後一周的股價變化;根據過去2年某店鋪每周想消費人數預測下周來店消費的人數等等
RNN 和 LSTM 模型
時間序列模型最常用最強大的的工具就是遞歸神經網路(recurrent neural network, RNN)。相比與普通神經網路的各計算結果之間相互獨立的特點,RNN的每一次隱含層的計算結果都與當前輸入以及上一次的隱含層結果相關。通過這種方法,RNN的計算結果便具備了記憶之前幾次結果的特點。
典型的RNN網路結構如下:
『捌』 ARIMA時間序列建模過程——原理及python實現
原文鏈接:http://tecdat.cn/?p=20742
時間序列被定義為一系列按時間順序索引的數據點。時間順序可以是每天,每月或每年。
以下是一個時間序列示例,該示例說明了從1949年到1960年每月航空公司的乘客數量。
最受歡迎的見解
1.在python中使用lstm和pytorch進行時間序列預測
2.python中利用長短期記憶模型lstm進行時間序列預測分析
3.使用r語言進行時間序列(arima,指數平滑)分析
4.r語言多元copula-garch-模型時間序列預測
5.r語言copulas和金融時間序列案例
6.使用r語言隨機波動模型sv處理時間序列中的隨機波動
7.r語言時間序列tar閾值自回歸模型
8.r語言k-shape時間序列聚類方法對股票價格時間序列聚類
9.python3用arima模型進行時間序列預測
『玖』 請教用人工神經網路進行股票預測在weka
預測股票可不是有以往股票數據就能的,要考慮因果性,現實事件與股票波動有因果性,也就是時序性。在這情況下有LSTM單元組成循環神經網路可以做到,但訓練集的強度跟體積可是很大的,這需要注意。