當前位置:首頁 » 股票資訊 » 海量數據
擴展閱讀
新三板的公司股票能買嗎 2025-07-23 20:29:44
這幾年股票行情好嗎 2025-07-23 20:23:45

海量數據

發布時間: 2021-07-07 01:29:25

㈠ 如何處理海量數據

在實際的工作環境下,許多人會遇到海量數據這個復雜而艱巨的問題,它的主要難點有以下幾個方面:
一、數據量過大,數據中什麼情況都可能存在。
如果說有10條數據,那麼大不了每條去逐一檢查,人為處理,如果有上百條數據,也可以考慮,如果數據上到千萬級別,甚至 過億,那不是手工能解決的了,必須通過工具或者程序進行處理,尤其海量的數據中,什麼情況都可能存在,例如,數據中某處格式出了問題,尤其在程序處理時, 前面還能正常處理,突然到了某個地方問題出現了,程序終止了。
二、軟硬體要求高,系統資源佔用率高。
對海量的數據進行處理,除了好的方法,最重要的就是合理使用工具,合理分配系統資源。一般情況,如果處理的數據過TB級,小型機是要考慮的,普通的機子如果有好的方法可以考慮,不過也必須加大CPU和內存,就象面對著千軍萬馬,光有勇氣沒有一兵一卒是很難取勝的。
三、要求很高的處理方法和技巧。
這也是本文的寫作目的所在,好的處理方法是一位工程師長期工作經驗的積累,也是個人的經驗的總結。沒有通用的處理方法,但有通用的原理和規則。
下面我們來詳細介紹一下處理海量數據的經驗和技巧:
一、選用優秀的資料庫工具
現在的資料庫工具廠家比較多,對海量數據的處理對所使用的資料庫工具要求比較高,一般使用Oracle或者DB2,微軟 公司最近發布的SQL Server 2005性能也不錯。另外在BI領域:資料庫,數據倉庫,多維資料庫,數據挖掘等相關工具也要進行選擇,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。筆者在實際數據分析項目中,對每天6000萬條的日誌數據進行處理,使用SQL Server 2000需要花費6小時,而使用SQL Server 2005則只需要花費3小時。
二、編寫優良的程序代碼
處理數據離不開優秀的程序代碼,尤其在進行復雜數據處理時,必須使用程序。好的程序代碼對數據的處理至關重要,這不僅僅是數據處理准確度的問題,更是數據處理效率的問題。良好的程序代碼應該包含好的演算法,包含好的處理流程,包含好的效率,包含好的異常處理機制等。
三、對海量數據進行分區操作
對海量數據進行分區操作十分必要,例如針對按年份存取的數據,我們可以按年進行分區,不同的資料庫有不同的分區方式,不 過處理機制大體相同。例如SQL Server的資料庫分區是將不同的數據存於不同的文件組下,而不同的文件組存於不同的磁碟分區下,這樣將數據分散開,減小磁碟I/O,減小了系統負荷, 而且還可以將日誌,索引等放於不同的分區下。
四、建立廣泛的索引
對海量的數據處理,對大表建立索引是必行的,建立索引要考慮到具體情況,例如針對大表的分組、排序等欄位,都要建立相應 索引,一般還可以建立復合索引,對經常插入的表則建立索引時要小心,筆者在處理數據時,曾經在一個ETL流程中,當插入表時,首先刪除索引,然後插入完 畢,建立索引,並實施聚合操作,聚合完成後,再次插入前還是刪除索引,所以索引要用到好的時機,索引的填充因子和聚集、非聚集索引都要考慮。
五、建立緩存機制
當數據量增加時,一般的處理工具都要考慮到緩存問題。緩存大小設置的好差也關繫到數據處理的成敗,例如,筆者在處理2億條數據聚合操作時,緩存設置為100000條/Buffer,這對於這個級別的數據量是可行的。
六、加大虛擬內存
如果系統資源有限,內存提示不足,則可以靠增加虛擬內存來解決。筆者在實際項目中曾經遇到針對18億條的數據進行處理, 內存為1GB,1個P42.4G的CPU,對這么大的數據量進行聚合操作是有問題的,提示內存不足,那麼採用了加大虛擬內存的方法來解決,在6塊磁碟分區 上分別建立了6個4096M的磁碟分區,用於虛擬內存,這樣虛擬的內存則增加為 4096*6 + 1024 =25600 M,解決了數據處理中的內存不足問題。
七、分批處理
海量數據處理難因為數據量大,那麼解決海量數據處理難的問題其中一個技巧是減少數據量。可以對海量數據分批處理,然後處 理後的數據再進行合並操作,這樣逐個擊破,有利於小數據量的處理,不至於面對大數據量帶來的問題,不過這種方法也要因時因勢進行,如果不允許拆分數據,還 需要另想辦法。不過一般的數據按天、按月、按年等存儲的,都可以採用先分後合的方法,對數據進行分開處理。
八、使用臨時表和中間表
數據量增加時,處理中要考慮提前匯總。這樣做的目的是化整為零,大表變小表,分塊處理完成後,再利用一定的規則進行合 並,處理過程中的臨時表的使用和中間結果的保存都非常重要,如果對於超海量的數據,大表處理不了,只能拆分為多個小表。如果處理過程中需要多步匯總操作, 可按匯總步驟一步步來,不要一條語句完成,一口氣吃掉一個胖子。
九、優化查詢SQL語句
在對海量數據進行查詢處理過程中,查詢的SQL語句的性能對查詢效率的影響是非常大的,編寫高效優良的SQL腳本和存儲 過程是資料庫工作人員的職責,也是檢驗資料庫工作人員水平的一個標准,在對SQL語句的編寫過程中,例如減少關聯,少用或不用游標,設計好高效的資料庫表 結構等都十分必要。筆者在工作中試著對1億行的數據使用游標,運行3個小時沒有出結果,這是一定要改用程序處理了。
十、使用文本格式進行處理
對一般的數據處理可以使用資料庫,如果對復雜的數據處理,必須藉助程序,那麼在程序操作資料庫和程序操作文本之間選擇, 是一定要選擇程序操作文本的,原因為:程序操作文本速度快;對文本進行處理不容易出錯;文本的存儲不受限制等。例如一般的海量的網路日誌都是文本格式或者 csv格式(文本格式),對它進行處理牽扯到數據清洗,是要利用程序進行處理的,而不建議導入資料庫再做清洗。
十一、定製強大的清洗規則和出錯處理機制
海量數據中存在著不一致性,極有可能出現某處的瑕疵。例如,同樣的數據中的時間欄位,有的可能為非標準的時間,出現的原因可能為應用程序的錯誤,系統的錯誤等,這是在進行數據處理時,必須制定強大的數據清洗規則和出錯處理機制。
十二、建立視圖或者物化視圖
視圖中的數據來源於基表,對海量數據的處理,可以將數據按一定的規則分散到各個基表中,查詢或處理過程中可以基於視圖進行,這樣分散了磁碟I/O,正如10根繩子吊著一根柱子和一根吊著一根柱子的區別。
十三、避免使用32位機子(極端情況)
目前的計算機很多都是32位的,那麼編寫的程序對內存的需要便受限制,而很多的海量數據處理是必須大量消耗內存的,這便要求更好性能的機子,其中對位數的限制也十分重要。
十四、考慮操作系統問題
海量數據處理過程中,除了對資料庫,處理程序等要求比較高以外,對操作系統的要求也放到了重要的位置,一般是必須使用伺服器的,而且對系統的安全性和穩定性等要求也比較高。尤其對操作系統自身的緩存機制,臨時空間的處理等問題都需要綜合考慮。
十五、使用數據倉庫和多維資料庫存儲
數據量加大是一定要考慮OLAP的,傳統的報表可能5、6個小時出來結果,而基於Cube的查詢可能只需要幾分鍾,因此處理海量數據的利器是OLAP多維分析,即建立數據倉庫,建立多維數據集,基於多維數據集進行報表展現和數據挖掘等。
十六、使用采樣數據,進行數據挖掘
基於海量數據的數據挖掘正在逐步興起,面對著超海量的數據,一般的挖掘軟體或演算法往往採用數據抽樣的方式進行處理,這樣 的誤差不會很高,大大提高了處理效率和處理的成功率。一般采樣時要注意數據的完整性和,防止過大的偏差。筆者曾經對1億2千萬行的表數據進行采樣,抽取出 400萬行,經測試軟體測試處理的誤差為千分之五,客戶可以接受。
還有一些方法,需要在不同的情況和場合下運用,例如使用代理鍵等操作,這樣的好處是加快了聚合時間,因為對數值型的聚合比對字元型的聚合快得多。類似的情況需要針對不同的需求進行處理。
海量數據是發展趨勢,對數據分析和挖掘也越來越重要,從海量數據中提取有用信息重要而緊迫,這便要求處理要准確,精度要高,而且處理時間要短,得到有價值信息要快,所以,對海量數據的研究很有前途,也很值得進行廣泛深入的研究。

㈡ 「大數據」與「海量數據」有哪些區別

最根本的區別就是:

海量數據是一家公司,成立於2007年,是中國數據技術領航企業。

專注於資料庫產品研發、銷售和服務,擁有兩大資料庫產品:基於開源的「雲圖資料庫(AtlasDB)」和自主可控的「海量資料庫(Vastbase)」。

大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

(2)海量數據擴展閱讀

大數據的影響:

以大數據、物聯網驅動的新經濟的含義,除了包括阿里、騰訊這些天生具有數字基因的企業崛起,更重要的是整個商業社會在數字化進程中,企業組織架構、商業模式、業務流程、管理方式的變革,大數據影響的絕不僅僅是技術。

數字經濟不僅僅影響了人與人、人與物之間的連接,也改變了社會,改變了組織。

㈢ 海量數據的介紹

海量數據是北京海量數據技術股份有限公司的簡稱,創立於2007年,是中國領先的數據技術服務提供商,業務涵蓋數據技術的系統集成、技術服務和產品研發,旗下控股2家子公司:北京海量雲信息技術有限公司、海量雲圖(北京)數據技術有限公司。公司總部設在北京,在沈陽、濟南、上海、南京、武漢、廣州、深圳、成都、西安等多個城市設有辦事機構,海量數據自成立以來一直保持強勁發展勢頭,年均復合增長率超過35%。

㈣ 大數據與海量數據的特點

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
魔方(大數據模型平台
大數據模型平台是一款基於服務匯流排與分布式雲計算兩大技術架構的一款數據分析、挖掘的工具平台,其採用分布式文件系統對數據進行存儲,支持海量數據的處理。採用多種的數據採集技術,支持結構化數據及非結構化數據的採集。通過圖形化的模型搭建工具,支持流程化的模型配置。通過第三方插件技術,很容易將其他工具及服務集成到平台中去。數據分析研判平台就是海量信息的採集,數據模型的搭建,數據的挖掘、分析最後形成知識服務於實戰、服務於決策的過程,平台主要包括數據採集部分,模型配置部分,模型執行部分及成果展示部分等。
大數據平台數據抽取工具
大數據平台數據抽取工具實現db到hdfs數據導入功能,藉助Hadoop提供高效的集群分布式並行處理能力,可以採用資料庫分區、按欄位分區、分頁方式並行批處理抽取db數據到hdfs文件系統中,能有效解決大數據傳統抽取導致的作業負載過大抽取時間過長的問題,為大數據倉庫提供傳輸管道。數據處理伺服器為每個作業分配獨立的作業任務處理工作線程和任務執行隊列,作業之間互不幹擾靈活的作業任務處理模式:可以增量方式執行作業任務,可配置的任務處理時間策略,根據不同需求定製。採用非同步事件驅動模式來管理和分發作業指令、採集作業狀態數據。通過管理監控端,可以實時監控作業在各個數據處理節點作業任務的實時運行狀態,查看作業的歷史執行狀態,方便地實現提交新的作業、重新執行作業、停止正在執行的作業等操作。
互聯網數據採集工具
網路信息雷達是一款網路信息定向採集產品,它能夠對用戶設置的網站進行數據採集和更新,實現靈活的網路數據採集目標,為互聯網數據分析提供基礎。
未至·雲(互聯網推送服務平台)
雲計算數據中心以先進的中文數據處理和海量數據支撐為技術基礎,並在各個環節輔以人工服務,使得數據中心能夠安全、高效運行。根據雲計算數據中心的不同環節,我們專門配備了系統管理和維護人員、數據加工和編撰人員、數據採集維護人員、平台系統管理員、機構管理員、輿情監測和分析人員等,滿足各個環節的需要。面向用戶我們提供面向政府和面向企業的解決方案。
顯微鏡(大數據文本挖掘工具)
文本挖掘是指從文本數據中抽取有價值的信息和知識的計算機處理技術, 包括文本分類、文本聚類、信息抽取、實體識別、關鍵詞標引、摘要等。基於Hadoop MapRece的文本挖掘軟體能夠實現海量文本的挖掘分析。CKM的一個重要應用領域為智能比對, 在專利新穎性評價、科技查新、文檔查重、版權保護、稿件溯源等領域都有著廣泛的應用。
數據立方(可視化關系挖掘)
大數據可視化關系挖掘的展現方式包括關系圖、時間軸、分析圖表、列表等多種表達方式,為使用者提供全方位的信息展現方式。

㈤ 海量數據存儲一般用在什麼地方

分布式存儲是一種數據存儲技術,它通過網路使用企業中每台機器上的磁碟空間,這些分散的存儲資源構成了虛擬存儲設備,數據分布存儲在企業的各個角落。你可以咨詢下瑞馳,專業做數據存儲的。

㈥ 大數據的一定是海量數據嗎實時的源源不斷的產生的數據是不是大數據

就一定是海量數據嗎?實時的源源不斷地產生數據他。是大數據的。

㈦ 海量數據存儲

存儲技術經歷了單個磁碟、磁帶、RAID到網路存儲系統的發展歷程。網路存儲技術就是將網路技術和I/O技術集成起來,利用網路的定址能力、即插即用的連接性、靈活性,存儲的高性能和高效率,提供基於網路的數據存儲和共享服務。在超大數據量的存儲管理、擴展性方面具有明顯的優勢。

典型的網路存儲技術有網路附加存儲NAS(Network Attached Storage)和存儲區域網SAN(Storage Area Networks)兩種。

1)NAS技術是網路技術在存儲領域的延伸和發展。它直接將存儲設備掛在網上,有良好的共享性、開放性。缺點是與LAN共同用物理網路,易形成擁塞,而影響性能。特別是在數據備份時,性能較低,影響在企業存儲應用中的地位。

2)SAN技術是以數據存儲為中心,使用光纖通道連接高速網路存儲的體系結構。即將數據存儲作為網路上的一個區域獨立出來。在高度的設備和數據共享基礎上,減輕網路和伺服器的負擔。因光纖通道的存儲網和LAN分開,使性能得到很大的提高,而且還提供了很高的可靠性和強大的連續業務處理能力。在SAN中系統的擴展、數據遷移、數據本地備份、遠程數據容災數據備份和數據管理等都比較方便,整個SAN成為一個統一管理的存儲池(Storage Pool)。SAN存儲設備之間通過專用通道進行通信,不佔用伺服器的資源。因此非常適合超大量數據的存儲,成為網路存儲的主流。

3)存儲虛擬化技術是將系統中各種異構的存儲設備映射為一個單一的存儲資源,對用戶完全透明,達到互操作性的目的和利用已有的硬體資源,把SAN內部的各種異構的存儲資源統一成一個單一視圖的存儲池,可根據用戶的需要方便地切割、分配。從而保持已有的投資,減少總體成本,提高存儲效率。

存儲虛擬化包括3個層次結構:基於伺服器的虛擬化存儲、基於存儲設備的虛擬化存儲和基於網路的虛擬化存儲。

1)基於伺服器的虛擬化存儲由邏輯管理軟體在主機/伺服器上完成。經過虛擬化的存儲空間可跨越多個異構的磁碟陣列,具有高度的穩定性和開放性,實現容易、簡便。但對異構環境和分散管理不太適應。

2)基於存儲設備的虛擬化存儲,因一些高端磁碟陣列本身具有智能化管理,可以實現同一陣列,供不同主機分享。其結構性能可達到最優。但實現起來價格昂貴,可操作性差。

3)基於網路的虛擬化存儲,通過使用專用的存儲管理伺服器和相應的虛擬化軟體,實現多個主機/伺服器對多個異構存儲設備之間進行訪問,達到不同主機和存儲之間真正的互連和共享,成為虛擬存儲的主要形式。根據不同結構可分為基於專用伺服器和基於存儲路由器兩種方式。①基於專用伺服器的虛擬化,是用一台伺服器專用於提供系統的虛擬化功能。根據網路拓撲結構和專用伺服器的具體功能,其虛擬化結構有對稱和非對稱兩種方式。在對稱結構中數據的傳輸與元數據訪問使用同一通路。實現簡單,對伺服器和存儲設備的影響小,對異構環境的適應性強。缺點是專用伺服器可能成為系統性能的瓶頸,影響SAN的擴展。在非對稱結構中,數據的傳輸與元數據訪問使用不同通路。應用伺服器的I/O命令先通過命令通路傳送到專用伺服器,獲取元數據和傳輸數據視圖後,再通過數據通路得到所需的數據。與對稱結構相比,提高了存儲系統的性能,增加了擴展能力。②基於存儲路由器的SAN虛擬化,存儲路由器是一種智能化設備,既具有路由器的功能,又針對I/O進行專門優化。它部署在存儲路由器上,多個存儲路由器保存著整個存儲系統中的元數據多個副本,並通過一定的更新策略保持一致性。這種結構中,因存儲路由器具有強大的協議功能,所以具有更多的優勢。能充分利用存儲資源,保護投資。能實現軟硬體隔離,並輔有大量的自動化工具,提高了虛擬伺服器的安全性,降低對技術人員的需求和成本。

㈧ 怎麼在海量數據中找出重復次數最多的一個

以IP為例:
1、以IP % 10000 (ip 是個32位整數) 為文件名 將IP存入文件
2、用HASH統計每個文件中出現最多的IP 記錄下來

3、比較每個文件中出現最多的IP 來得到總出現最多的IP