當前位置:首頁 » 股票資訊 » 提貨姐
擴展閱讀
今日安琪股票價格 2025-07-28 21:02:12

提貨姐

發布時間: 2021-07-10 02:57:41

❶ 上海市那裡有辦電焊證

肉提貨姐口頭語

❷ 提貨姐的真實身份

根據「朵太lynn」曾發布「@干露露 竟然和你同姓」內容的微博,網友判斷「朵太lynn」姓干。在某論壇,網友還人肉出「朵太lynn」真實姓名為「干琳娜」,並曝光了其QQ號,電話等。成都晚報記者撥打被網友人肉出的電話號碼,一位年輕女子接聽了電話,她表示自己叫干琳娜,網名正是「朵太lynn」。

❸ 提貨姐的拼爹事件

除了「優秀給力」的公務員老公,「朵太lynn」也會「拼爹」。2010年11月10日,她發微博:「爸爸打電話給我,說自己這幾天一直參加市政會議,興奮地告訴我,剛榮升某區工商委的副主任,從商的人一下從政……」另外還有老爹打電話給她,「聊他最近收購了家西餐咖啡廳,已經裝修起來了,資金數百萬,絕對大工程啊……」

❹ 貴妃雞火鍋

呵呵,我一家人經常吃個,味道不錯

❺ 提貨姐的網友回應

網友留言:「姑娘,你要害死你老公啊!」還有網友調侃:「不怕神一樣的反貪,就怕豬一樣的老婆……」

❻ 七年級英語上冊的手抄報怎麼辦

WJHHHHI人家惡化i接啊就愛金風科技啊哈人均可同濟科技快點解決解放後萬惡愛喝酒餓提貨姐阿濟格看韓劇啊誒他及及及及及及及及及及及及及特啊他哈餓他哈i
ahtja俄海軍大海忒好拉;jwerajsataewjhiejiojhah啊餓哈配他及和
aehetajhehtehikaejpsjtraotjha哈吉哈i餓怕及他和愛及哈i阿吉就會i餓啊及和體怕及啊及餓體及哈i偶就

❼ 通過圖片說明勾股定理的正確性

【證法1】(課本的證明)

做8個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c,再做三個邊長分別為a、b、c的正方形,把它們像上圖那樣拼成兩個正方形.
從圖上可以看到,這兩個正方形的邊長都是a + b,所以面積相等. 即
, 整理得 .

【證法2】(鄒元治證明)
以a、b 為直角邊,以c為斜邊做四個全等的直角三角形,則每個直角三角形的面積等於 . 把這四個直角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上,B、F、C三點在一條直線上,C、G、D三點在一條直線上.
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º.
∴ ∠HEF = 180º―90º= 90º.
∴ 四邊形EFGH是一個邊長為c的
正方形. 它的面積等於c2.
∵ RtΔGDH ≌ RtΔHAE,
∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一個邊長為a + b的正方形,它的面積等於 .
∴ . ∴ .

【證法3】(趙爽證明)
以a、b 為直角邊(b>a), 以c為斜
邊作四個全等的直角三角形,則每個直角
三角形的面積等於 . 把這四個直角三
角形拼成如圖所示形狀.
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一個邊長為c的正方形,它的面積等於c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一個邊長為b―a的正方形,它的面積等於 .
∴ .
∴ .
【證法4】(1876年美國總統Garfield證明)
以a、b 為直角邊,以c為斜邊作兩個全等的直角三角形,則每個直角三角形的面積等於 . 把這兩個直角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90º,
∴ ∠AED + ∠BEC = 90º.
∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC是一個等腰直角三角形,
它的面積等於 .
又∵ ∠DAE = 90º, ∠EBC = 90º,
∴ AD‖BC.
∴ ABCD是一個直角梯形,它的面積等於 .
∴ .
∴ .

【證法5】(梅文鼎證明)
做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b ,斜邊長為c. 把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上. 過C作AC的延長線交DF於點P.
∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º.
又∵ AB = BE = EG = GA = c,
∴ ABEG是一個邊長為c的正方形.
∴ ∠ABC + ∠CBE = 90º.
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90º.
即 ∠CBD= 90º.
又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a.
∴ BDPC是一個邊長為a的正方形.
同理,HPFG是一個邊長為b的正方形.
設多邊形GHCBE的面積為S,則

,
∴ .

【證法6】(項明達證明)
做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.
過點Q作QP‖BC,交AC於點P.
過點B作BM⊥PQ,垂足為M;再過點
F作FN⊥PQ,垂足為N.
∵ ∠BCA = 90º,QP‖BC,
∴ ∠MPC = 90º,
∵ BM⊥PQ,
∴ ∠BMP = 90º,
∴ BCPM是一個矩形,即∠MBC = 90º.
∵ ∠QBM + ∠MBA = ∠QBA = 90º,
∠ABC + ∠MBA = ∠MBC = 90º,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可證RtΔQNF ≌ RtΔAEF.
從而將問題轉化為【證法4】(梅文鼎證明).

【證法7】(歐幾里得證明)
做三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點在一條直線上,連結
BF、CD. 過C作CL⊥DE,
交AB於點M,交DE於點
L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面積等於 ,
ΔGAD的面積等於矩形ADLM
的面積的一半,
∴ 矩形ADLM的面積 = .
同理可證,矩形MLEB的面積 = .
∵ 正方形ADEB的面積
= 矩形ADLM的面積 + 矩形MLEB的面積
∴ ,即 .

【證法8】(利用相似三角形性質證明)
如圖,在RtΔABC中,設直角邊AC、BC的長度分別為a、b,斜邊AB的長為c,過點C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中,
∵ ∠ADC = ∠ACB = 90º,
∠CAD = ∠BAC,
∴ ΔADC ∽ ΔACB.
AD∶AC = AC ∶AB,
即 .
同理可證,ΔCDB ∽ ΔACB,從而有 .
∴ ,即 .

【證法9】(楊作玫證明)
做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a),斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形. 過A作AF⊥AC,AF交GT於F,AF交DT於R. 過B作BP⊥AF,垂足為P. 過D作DE與CB的延長線垂直,垂足為E,DE交AF於H.
∵ ∠BAD = 90º,∠PAC = 90º,
∴ ∠DAH = ∠BAC.
又∵ ∠DHA = 90º,∠BCA = 90º,
AD = AB = c,
∴ RtΔDHA ≌ RtΔBCA.
∴ DH = BC = a,AH = AC = b.
由作法可知, PBCA 是一個矩形,
所以 RtΔAPB ≌ RtΔBCA. 即PB =
CA = b,AP= a,從而PH = b―a.
∵ RtΔDGT ≌ RtΔBCA ,
RtΔDHA ≌ RtΔBCA.
∴ RtΔDGT ≌ RtΔDHA .
∴ DH = DG = a,∠GDT = ∠HDA .
又∵ ∠DGT = 90º,∠DHF = 90º,
∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,
∴ DGFH是一個邊長為a的正方形.
∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .
∴ TFPB是一個直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).
用數字表示面積的編號(如圖),則以c為邊長的正方形的面積為

∵ = ,

∴ = . ②
把②代入①,得

= = .
∴ .

【證法10】(李銳證明)
設直角三角形兩直角邊的長分別為a、b(b>a),斜邊的長為c. 做三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使A、E、G三點在一條直線上. 用數字表示面積的編號(如圖).
∵ ∠TBE = ∠ABH = 90º,
∴ ∠TBH = ∠ABE.
又∵ ∠BTH = ∠BEA = 90º,
BT = BE = b,
∴ RtΔHBT ≌ RtΔABE.
∴ HT = AE = a.
∴ GH = GT―HT = b―a.
又∵ ∠GHF + ∠BHT = 90º,
∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,
∴ ∠GHF = ∠DBC.
∵ DB = EB―ED = b―a,
∠HGF = ∠BDC = 90º,
∴ RtΔHGF ≌ RtΔBDC. 即 .
過Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE
= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌
RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 .
由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.
∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,
∴ ∠FQM = ∠CAR.
又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,
∴ RtΔQMF ≌ RtΔARC. 即 .
∵ , , ,
又∵ , , ,

=
= ,
即 .

【證法11】(利用切割線定理證明)
在RtΔABC中,設直角邊BC = a,AC = b,斜邊AB = c. 如圖,以B為圓心a為半徑作圓,交AB及AB的延長線分別於D、E,則BD = BE = BC = a. 因為∠BCA = 90º,點C在⊙B上,所以AC是⊙B 的切線. 由切割線定理,得

=
=
= ,
即 ,
∴ .

【證法12】(利用多列米定理證明)
在RtΔABC中,設直角邊BC = a,AC = b,斜邊AB = c(如圖). 過點A作AD‖CB,過點B作BD‖CA,則ACBD為矩形,矩形ACBD內接於一個圓. 根據多列米定理,圓內接四邊形對角線的乘積等於兩對邊乘積之和,有

∵ AB = DC = c,AD = BC = a,
AC = BD = b,
∴ ,即 ,
∴ .

【證法13】(作直角三角形的內切圓證明)
在RtΔABC中,設直角邊BC = a,AC = b,斜邊AB = c. 作RtΔABC的內切圓⊙O,切點分別為D、E、F(如圖),設⊙O的半徑為r.
∵ AE = AF,BF = BD,CD = CE,

= = r + r = 2r,
即 ,
∴ .
∴ ,
即 ,
∵ ,
∴ ,
又∵ = =
= = ,
∴ ,
∴ ,
∴ , ∴ .
【證法14】(利用反證法證明)
如圖,在RtΔABC中,設直角邊AC、BC的長度分別為a、b,斜邊AB的長為c,過點C作CD⊥AB,垂足是D.
假設 ,即假設 ,則由
= =
可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.
在ΔADC和ΔACB中,
∵ ∠A = ∠A,
∴ 若 AD:AC≠AC:AB,則
∠ADC≠∠ACB.
在ΔCDB和ΔACB中,
∵ ∠B = ∠B,
∴ 若BD:BC≠BC:AB,則
∠CDB≠∠ACB.
又∵ ∠ACB = 90º,
∴ ∠ADC≠90º,∠CDB≠90º.
這與作法CD⊥AB矛盾. 所以, 的假設不能成立.
∴ .

【證法15】(辛卜松證明)

設直角三角形兩直角邊的長分別為a、b,斜邊的長為c. 作邊長是a+b的正方形ABCD. 把正方形ABCD劃分成上方左圖所示的幾個部分,則正方形ABCD的面積為 ;把正方形ABCD劃分成上方右圖所示的幾個部分,則正方形ABCD的面積為 = .
∴ ,
∴ .

【證法16】(陳傑證明)
設直角三角形兩直角邊的長分別為a、b(b>a),斜邊的長為c. 做兩個邊長分別為a、b的正方形(b>a),把它們拼成如圖所示形狀,使E、H、M三點在一條直線上. 用數字表示面積的編號(如圖).
在EH = b上截取ED = a,連結DA、DC,
則 AD = c.
∵ EM = EH + HM = b + a , ED = a,
∴ DM = EM―ED = ―a = b.
又∵ ∠CMD = 90º,CM = a,
∠AED = 90º, AE = b,
∴ RtΔAED ≌ RtΔDMC.
∴ ∠EAD = ∠MDC,DC = AD = c.
∵ ∠ADE + ∠ADC+ ∠MDC =180º,
∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,
∴ ∠ADC = 90º.
∴ 作AB‖DC,CB‖DA,則ABCD是一個邊長為c的正方形.
∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,
∴ ∠BAF=∠DAE.
連結FB,在ΔABF和ΔADE中,
∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,
∴ ΔABF ≌ ΔADE.
∴ ∠AFB = ∠AED = 90º,BF = DE = a.
∴ 點B、F、G、H在一條直線上.
在RtΔABF和RtΔBCG中,
∵ AB = BC = c,BF = CG = a,
∴ RtΔABF ≌ RtΔBCG.

❽ 美國開發的主戰坦克網游

你說的應該是裝甲戰爭,現在還沒有出來,可以去看看哦

❾ 提貨姐的走紅起因

2012年1月17日微博上最火的,是一位自稱上海某公務員的嬌妻——網友「朵太lynn」。「朵太lynn」一詞以近17萬的搜索量,霸佔著新浪微博昨日「熱搜榜」第一位,起因是她在微博寫道:「老公給了我幾千元海鮮提貨券,近千元水果和泰康食品券,自己也有幾千元年夜飯半成品套餐,市政府真給力,公務員就是色意(「色意」上海方言,意思為舒適)……」原微博一發出,一小時內就有1000多次轉發,「朵太lynn」迅速有了火爆網路的名字——「提貨姐」。

❿ 數學小論文 50字

假如A=B且B=C,那麼A=C,這便是等量代換。
等量代換並不難,但它方便了我們研究數學。
有了等量代換就可以解決很多題目,他很有用。