㈠ 簡述液壓傳動的工作原理
工作原理:
電動機帶動液壓泵從油箱吸油,液壓泵把電動機的機械能轉換為液體的壓力能。液壓介質通過管道經節流閥和換向和閥進入液壓缸左腔,推動活塞帶動工作台右移,液壓缸右腔排出的液壓介質經換向閥流回油箱。
換向閥換向之後液壓介質進入液壓缸右腔,使活塞左移,推動工作台反向移動。改變節流閥的開口可調節液壓缸的運動速度。液壓系統的壓力可通過溢流閥調節。在繪制液壓系統圖時,為了簡化起見都採用規定的符號代表液壓元件,這種符號稱為職能符號。
任何一個液壓傳動系統都是由幾個基本迴路組成的,每一基本迴路都具有一定的控制功能。幾個基本迴路組合在一起,可按一定要求對執行元件的運動方向、工作壓力和運動速度進行控制。根據控制功能不同,基本迴路分為壓力控制迴路、速度控制迴路和方向控制迴路。
(1)液壓傳動的工作原理擴展閱讀:
應用:
液壓傳動主要應用如下:
(1)一般工業用液壓系統塑料加工機械(注塑機)、壓力機械(鍛壓機)、重型機械(廢鋼壓塊機)、機床(全自動六角車床、平面磨床)等;
(2)行走機械用液壓系統工程機械(挖掘機)、起重機械(汽車吊)、建築機械(打樁機)、農業機械(聯合收割機)、汽車(轉向器、減振器)等;
(3)鋼鐵工業用液壓系統 冶金機械(軋鋼機)、提升裝置(升降機)、軋輥調整裝置等;
(4)土木工程用液壓系統 防洪閘門及堤壩裝置(浪潮防護擋板)、河床升降裝置、橋梁操縱機構和礦山機械(鑿岩機)等;
(5)發電廠用液壓系統渦輪機(調速裝置)等;
(6)特殊技術用液壓系統 巨型天線控制裝置、測量浮標、飛機起落架的收放裝置及方向舵控制裝置、升降旋轉舞台等;
(7)船舶用液壓系統 甲板起重機械(絞車)、船頭門、艙壁閥、船尾推進器等;
(8)軍事工業用液壓系統火炮操縱裝置、艦船減搖裝置、飛行器模擬等。
參考資料:網路-液壓傳動
㈡ 液壓傳動原理
液壓傳動原理:
機械能轉換為液體的壓力能
工作原理:
電動機帶動液壓泵從油箱吸油,液壓泵把電動機的機械能轉換為液體的壓力能。液壓介質通過管道經節流閥和換向和閥進入液壓缸左腔,推動活塞帶動工作台右移,液壓缸右腔排出的液壓介質經換向閥流回油箱。
液壓傳動是指以液體為工作介質進行能量傳遞和控制的一種傳動方式。在液體傳動中,根據其能量傳遞形式不同,又分為液力傳動和液壓傳動。
㈢ 液壓傳動的工作原理、系統組成是什麼
1液壓傳動的工作原理
機床工作台的液壓傳動系統如圖4-17所示,它由油箱、濾油器、液壓泵、溢流閥、開停閥、節流閥、換向閥、液壓缸以及連接這些元件的油管、接頭組成。其工作原理如下:液壓泵由電動機驅動後,從油箱中吸油;油液經濾油器進入液壓泵,油液在泵腔中從入口低壓到泵出口高壓,在圖4-17(a)所示狀態下,通過開停閥、節流閥、換向閥進入液壓缸左腔,推動活塞使工作台向右移動;這時,液壓缸右腔的油經換向閥和回油管6排回油箱。
圖4-17機床工作台液壓傳動系統
1—工作台;2—液壓缸;3—活塞;4—換向手柄;5—換向閥;6,8,16—迴流管;7—節流閥;9—開停手柄;10—開停閥;11—壓力管;12—壓力支管;13—溢流閥;14—鋼球;15—彈簧;17—液壓泵;18—濾油器;19—油箱
如果將換向閥手柄轉換成圖4-17(b)所示狀態,則壓力管中的油將經過開停閥、節流閥和換向閥進入液壓缸右腔,推動活塞使工作台向左移動,並使液壓缸左腔的油經換向閥和回油管6排回油箱。
工作台的移動速度是通過節流閥來調節的。當節流閥開大時,進入液壓缸的油量增多(在單位時間內),工作台的移動速度增大;反之,當節流閥關小時,單位時間內進入液壓缸的油量減少,工作台的移動速度降低。為了克服移動工作台時所受到的各種阻力,液壓缸必須產生一個足夠大的推力,這個推力是由液壓缸中的油液壓力所產生的。要克服的阻力越大,對應液壓缸中的油液壓力就越高;反之阻力小,壓力就低。這種現象正說明了液壓傳動的一個基本原理——壓力取決於負載。
需要說明的是,液壓傳動利用液體的壓力能工作,它與在非密閉狀態下利用液體的動能或勢能工作的液力傳動有本質的區別。
溢流閥的作用是調節與穩定系統的最大工作壓力並溢出多餘的油液。當工作台工作進給時,液壓缸活塞(工作台)需要克服大的負載和慢速運動。進入液壓缸的壓力油必須有足夠的穩定壓力才能推動活塞帶動工作台運動。調節溢流閥的彈簧力,使之與液壓缸最大負載力相平衡,當系統壓力升高到稍大於溢流閥的彈簧力時,溢流閥便打開,將定量泵輸出的部分油液經迴流管16溢回油箱。這時系統壓力不再升高,工作台保持穩定的低速運動(工作進給)。當工作台快速退回時,因負載小所以油的壓力低,溢流閥打不開,泵的流量全部進入液壓缸,工作台則實現了快速運動。
從上面這個例子可以看到:液壓泵將電動機(或其他原動機)的機械能轉換為液體的壓力能,然後通過液壓缸(或液壓馬達)將液體的壓力能再轉換為機械能以推動負載運動。液壓傳動的過程就是機械能—液壓能—機械能的能量轉換過程。
2液壓傳動系統的組成
由上述例子可以看出液壓傳動系統的基本組成為:
(1)能源裝置——液壓泵。它將動力部分(電動機或其他原動機)所輸出的機械能轉換成液壓能,給系統提供壓力油液。
(2)執行裝置——液壓機(液壓缸、液壓馬達)。通過它將液壓能轉換成機械能,推動負載做功。
(3)控制裝置——液壓閥(分為流量、壓力、方向三類控制閥)。通過它們的控制或調節,使液流的壓力、流量和方向得以改變,從而改變執行元件的力(或力矩)、速度和方向。
(4)輔助裝置——油箱、管路、蓄能器、濾油器、管接頭、壓力表開關等。通過這些元件把系統連接起來,以實現各種工作循環。
(5)工作介質——液壓油。絕大多數液壓油採用礦物油,系統用它來傳遞能量或信息。
㈣ 液壓系統的工作原理
液壓傳動的工作原理。
液壓傳動是指以液體為工作介質進行能量傳遞和控制的一種傳動方式。液力傳動系統主要是利用液體動能進行能量轉換的傳動方式,如液力耦合器和液力變矩器。液壓傳動是利用液體壓力能進行能量轉換的傳動方式。在機械上採用液壓傳動技術,可以簡化機器的結構,減輕機器質量,減少材料消耗,降低製造成本,減輕勞動強度,提高工作效率和工作的可靠性。液壓傳動系統在交通工具、建築機械及其他機械上,特別是汽車上(如自動變速器、液力轉向裝置、剎車系統等)獲得了廣泛的應用,已成為汽車不可缺少的一部分。
液壓傳動系統在實際運行過程中,主要依靠液壓泵的作用來運轉。藉助原動機的功能,使機械能向液體壓力能的方向轉變,並對能量進行高效傳遞。在系統內部管道、控制閥門的傳遞作用下,利用馬達、液壓缸等元器件,完成液體壓力能向機械能的轉變,帶動系統的回轉或往復性直線運作。在執行系統控制工作、對能量進行傳遞時,需要液壓傳動系統中液體介質來發揮作用,而系統特有的傳動途徑可確保其具有很強的功能性。
液壓傳動的工作原理,可以用一個液壓千斤頂的工作原理來說明:
1—杠桿手柄
2—小油缸
3—小活塞
4,7—單向閥
5—吸油管
6,10—管道
8—大活塞
9—大油缸
11—截止閥
12—油箱
圖是液壓千斤頂的工作原理圖。大油缸9和大活塞8組成舉升液壓缸。杠桿手柄1、小油缸2、小活塞3、單向閥4和7組成手動液壓泵。如提起手柄使小活塞向上移動,小活塞下端油腔容積增大,形成局部真空,這時單向閥4打開,通過吸油管5從油箱12中吸油;用力壓下手柄,小活塞下移,小活塞下腔壓力高,單向閥4關閉,單向閥7打開,下腔的油液經管道6輸入舉升油缸9的下腔,迫使大活塞8向上移動,頂起重物。再次提起手柄吸油時,單向閥7自動關閉,使油液不能倒流,從而保證了重物不會自行下落。不斷地往復扳動手柄,就能不斷地把油液壓入舉升缸下腔,使重物逐漸地升起。如果打開截止閥11,舉升缸下腔的油液通過管道10、截止閥11流回油箱,重物就向下移動。這就是液壓千斤頂的工作原理。
液壓傳動是利用有壓力的油液作為傳遞動力的工作介質,而且傳動中必須經過兩次能量轉換 。
㈤ 簡述液壓傳動的工作原理是什麼
液力傳動主要是利用液體動能進行能量轉換的傳動方式,如液力耦合器和液力變矩器。液壓傳動是利用液體壓力能進行能量轉換的傳動方式。
在機械上採用液壓傳動技術,可以簡化機器的結構,減輕機器質量,減少材料消耗,降低製造成本,減輕勞動強度,提高工作效率和工作的可靠性。
在液體傳動中,根據其能量傳遞形式不同,又分為液力傳動和液壓傳動。
(5)液壓傳動的工作原理擴展閱讀:
與機械傳動比較,液壓傳動具有以下主要優點:
由於一般採用油液作為傳動介質,因此液壓元件具有良好的潤滑條件;工作液體可以用管路輸送到任何位置,允許液壓執行元件和液壓泵保持一定距離;
液壓傳動能方便地將原動機的旋轉運動變為直線運動。這些特點十分適合各種工程機械、采礦設備的需要,其典型應用實例就是煤礦井下使用的單體液壓支柱和液壓支架。
可以在運行過程中實現大范圍的無級調速,其傳動比可高達1:1 000,且調速性能不受功率大小的限制。易於實現載荷控制、速度控制和方向控制,可以進行集中控制、遙控和實現自動控制。
㈥ 液壓傳動工作原理
以液體作為工作介質,並以其壓力勢能進行能量傳遞的方式,即為液壓傳動。力按照帕斯卡定律(靜壓傳遞定律)進行傳遞。
密封容器內的靜止液體,當邊界上的壓力p0發生變化時,例如增加Δp,則容器內任意一點的壓力將增加同一數值Δp,也就是說,在密封容器內施加於靜止液體任一點的壓力將以等值傳到液體各點。這就是帕斯卡原理或靜壓傳遞原理。
圖8-1 液壓傳動工作原理
根據帕斯卡原理和靜壓力的特性(在液壓傳動系統中,靜止液體內部各點的壓力處處相等),液壓傳動不僅可以進行力的傳遞,而且還能將力放大和改變力的方向。圖8-1所示為應用帕斯卡原理推導壓力與負載關系的實例。圖中垂直液壓缸(負載缸)的截面積為A1,水平液壓缸截面積為A2,兩個活塞上的外作用力分別為F1、F2,則缸內壓力分別為p1=F1/A1、p2=F2/A2。由於兩缸充滿液體且互相連接,根據帕斯卡原理,有p1=p2。因此有:
液壓動力頭岩心鑽機設計與使用
上式表明,只要A1/A2足夠大,用很小的力F1就可產生很大的力F2。液壓千斤頂和水壓機就是按此原理製成的。
如果垂直液壓缸的活塞上沒有負載,即F1=0,則當略去活塞質量及其他阻力時,不論怎樣推動水平液壓缸的活塞也不能在液體中形成壓力。這說明液壓系統中的壓力是由外界負載決定的,這是液壓傳動的一個基本概念。
速度或轉速按照「容積變化相等」的原則進行傳遞(也叫容積式傳動)。
設圖8-1中的小活塞的移動速度為v2,面積為A2,則Δt時間內由於小活塞移動所排擠的空間即為排出的液體體積
液壓動力頭岩心鑽機設計與使用
Δt時間內由於大活塞移動所讓出的空間容積即為進入其內的液體體積
液壓動力頭岩心鑽機設計與使用
式中:v1為大活塞的移動速度;A1為大活塞的面積;忽略液體的泄漏損失,
有
液壓動力頭岩心鑽機設計與使用
所以
液壓動力頭岩心鑽機設計與使用
或
液壓動力頭岩心鑽機設計與使用
考慮到流體力學中把單位時間內流過的流體體積叫做流量,則流量
液壓動力頭岩心鑽機設計與使用
則前式變為
所以
由此可以得出如下結論:
(1)活塞移動的速度正比於進入其內的流量,而與負載無關。這是液壓傳動的一個基本概念。活塞移動速度可以通過改變流量Q的方法進行調節。
(2)活塞移動的速度反比於活塞的面積,也就是可以通過調整活塞的面積來控制活塞移動的速度。如可以通過改變活塞桿的粗細來控制雙向液壓缸的往返速度比等。
㈦ 液壓傳動的工作原理
液壓傳動的工作原理,可以用一個液壓千斤頂的工作原理來說明。
1—杠桿手柄2—小油缸3—小活塞4,7—單向閥5—吸油管6,10—管道
8—大活塞9—大油缸11—截止閥12—油箱
大油缸9和大活塞8組成舉升液壓缸。杠桿手柄1、小油缸2、小活塞3、單向閥4和7組成手動液壓泵。如提起手柄使小活塞向上移動,小活塞下端油腔容積增大,形成局部真空,這時單向閥4打開,通過吸油管5從油箱12中吸油;用力壓下手柄,小活塞下移,小活塞下腔壓力升高,單向閥4關閉,單向閥7打開,下腔的油液經管道6輸入舉升油缸9的下腔,迫使大活塞8向上移動,頂起重物。再次提起手柄吸油時,單向閥7自動關閉,使油液不能倒流,從而保證了重物不會自行下落。不斷地往復扳動手柄,就能不斷地把油液壓入舉升缸下腔,使重物逐漸地升起。如果打開截止閥11,舉升缸下腔的油液通過管道10、截止閥11流回油箱,重物就向下移動。這就是液壓千斤頂的工作原理。
通過對上面液壓千斤頂工作過程的分析,可以初步了解到液壓傳動的基本工作原理。液壓傳動是利用有壓力的油液作為傳遞動力的工作介質。壓下杠桿時,小油缸2輸出壓力油,是將機械能轉換成油液的壓力能,壓力油經過管道6及單向閥7,推動大活塞8舉起重物,是將油液的壓力能又轉換成機械能。大活塞8舉升的速度取決於單位時間內流入大油缸9中油容積的多少。由此可見,液壓傳動是一個不同能量的轉換過程。