当前位置:首页 » 交易平台 » 怎样用指标回测股票交易
扩展阅读
成室外股票价格 2025-06-20 11:32:42
买石油股票行不行 2025-06-20 11:20:58
买有色板块的股票好吗 2025-06-20 11:20:51

怎样用指标回测股票交易

发布时间: 2021-05-17 22:03:13

『壹』 求问各位大神们,有没有可以选股 回测的股票软件

也可以试试新推出的 千投量化
网址就是拼音全拼

『贰』 如果想用统计软件做一些交易策略的回测,用什么软件好,不想用股票软件自带的,限制有点多,谢了...

这个看你个人的技术水平了,简单的哪怕想excel就可以自己做策略回测,水平高的可以选择用matlab或者c++等自己写个程序回测,当然所有的前提是你有数据来源。

『叁』 请问大家什么软件能够用外部指标进行历史回测

需要一些比较专业的统计软件。第三方炒股软件一般都做的不好,有些我拿更权威的统计软件去计算,发现结果居然是错的。这个是个人经验(不过有点过时了,2012年尝试的,估计那个软件自己已经把错误更改了。)。


建议你做以下操作:


  1. 自己收集外部指标,并随时更新。如果可以的话,自己建个数据库。MYSQL之类的,免费而且非常容易上手。

  2. 选择一款可以轻松将金融数据导出成标准格式的第三方炒股软件。这个就是你自己的喜好了。大部分软件,这方面做的还是不错的,虽然要交费。

  3. 用一款比较专业的统计软件,将两者数据导入,然后按自己的想法,自由自在的做分析。你可以随便选一款你自己使用着习惯的统计软件。EVIEWS之类的太简单,包含的东西太少了。高度建议你选择一些自带金融计量分析工具的软件。建议你用以下统计软件:

    1. MATLAB。这个上手超快,前提是你很好的学过线性代数,因为计算是以矩阵为基础的。他自带的financial econometrics tool box包含的东西非常广,非常全。就算没有,因为软件自由度很高,所以可以轻松自己创造出一个。

    2. STATA。这个上手比上面那个还快。而且,不需要很好的线性代数,因为编程理念不是以矩阵为基础的。自带的金融计量的东西很多很全。更新也很快。缺点是,没上面那个自由度高。某些全新的算法和公式,你想用的话,自己写出来比较费劲,效率也容易低。特别是你想做蒙特卡罗模拟实验的时候。

    3. 其他的那些免费的统计软件,比如R, OX之类的我并不建议。因为是免费的,所以用户体验做的并不好。

『肆』 python的量化代码怎么用到股市中

2010 ~ 2017 沪深A股各行业量化分析

在开始各行业的量化分析之前,我们需要先弄清楚两个问题:

  • 第一,A股市场上都有哪些行业;

  • 第二,各行业自2010年以来的营收、净利润增速表现如何?

  • 第一个问题
    很好回答,我们使用JQData提供的获取行业成分股的方法,输入get_instries(name='sw_l1')
    得到申万一级行业分类结果如下:它们分别是:【农林牧渔、采掘、化工、钢铁、有色金属、电子、家用电器、食品饮料、纺织服装、轻工制造、医药生物、公用事业、交通运输、房地产、商业贸易、休闲服务、综合、建筑材料、建筑装饰、电器设备、国防军工、计算机、传媒、通信、银行、非银金融、汽车、机械设备】共计28个行业。

    第二个问题
    要知道各行业自2010年以来的营收、净利润增速表现,我们首先需要知道各行业在各个年度都有哪些成分股,然后加总该行业在该年度各成分股的总营收和净利润,就能得到整个行业在该年度的总营收和总利润了。这部分数据JQData也为我们提供了方便的接口:通过调用get_instry_stocks(instry_code=‘行业编码’, date=‘统计日期’),获取申万一级行业指定日期下的行业成分股列表,然后再调用查询财务的数据接口:get_fundamentals(query_object=‘query_object’, statDate=year)来获取各个成分股在对应年度的总营收和净利润,最后通过加总得到整个行业的总营收和总利润。这里为了避免非经常性损益的影响,我们对净利润指标最终选取的扣除非经常性损益的净利润数据。

    我们已经获取到想要的行业数据了。接下来,我们需要进一步分析,这些行业都有什么样的增长特征。

    我们发现,在28个申万一级行业中,有18个行业自2010年以来在总营收方面保持了持续稳定的增长。它们分别是:【农林牧渔,电子,食品饮料,纺织服装,轻工制造,医药生物,公用事业,交通运输,房地产,休闲服务,建筑装饰,电气设备,国防军工,计算机,传媒,通信,银行,汽车】;其他行业在该时间范围内出现了不同程度的负增长。

    那么,自2010年以来净利润保持持续增长的行业又会是哪些呢?结果是只有5个行业保持了基业长青,他们分别是医药生物,建筑装饰,电气设备,银行和汽车。(注:由于申万行业在2014年发生过一次大的调整,建筑装饰,电气设备,银行和汽车实际从2014年才开始统计。)

    从上面的分析结果可以看到,真正能够保持持续稳定增长的行业并不多,如果以扣非净利润为标准,那么只有医药生物,建筑装饰,电气设备,银行和汽车这五个行业可以称之为优质行业,实际投资中,就可以只从这几个行业中去投资。这样做的目的是,一方面,能够从行业大格局层面避免行业下行的风险,绕开一个可能出现负增长的的行业,从而降低投资的风险;另一方面,也大大缩短了我们的投资范围,让投资者能够专注于从真正好的行业去挑选公司进行投资。

「2010-2017」投资于优质行业龙头的收益表现

选好行业之后,下面进入选公司环节。我们知道,即便是一个好的行业也仍然存在表现不好的公司,那么什么是好的公司呢,本文试图从营业收入规模和利润规模和来考察以上五个基业长青的行业,从它们中去筛选公司作为投资标的。

3.1按营业收入规模构建的行业龙头投资组合

首先,我们按照营业收入规模,筛选出以上5个行业【医药生物,建筑装饰,电气设备,银行和汽车】从2010年至今的行业龙头如下表所示:

结论

通过以上行业分析和投资组合的历史回测可以看到:

  • 先选行业,再选公司,即使是从2015年股灾期间开始投资,至2018年5月1号,仍然能够获得相对理想的收益,可以说,红杉资本的赛道投资法则对于一般投资者还是比较靠谱的。

  • 在构建行业龙头投资组合时,净利润指标显著优于营业收入指标,获得的投资收益能够更大的跑赢全市场收益率

  • 市场是不断波动的,如果一个投资者从股灾期间开始投资,那么即使他买入了上述优质行业的龙头组合,在近3年也只能获得12%左右的累计收益;而如果从2016年5月3日开始投资,那么至2018年5月2日,2年时间就能获得超过50%以上的收益了。所以,在投资过程中选择时机也非常重要。

出自:JoinQuant 聚宽数据 JQData

『伍』 我朋友有一个股票稳定交易系统,请问怎么验证

首先这报表回测信息太少,又不值观.
回测报表最直观的就是资金曲线.
例如通达信回测会自动生成很比较直观报表.
这策略都已经用通达信回测了,
为什么直截那么点截图,连个个资金曲线都没有.
再有就是策略不能只看胜率,也要看最大回撤,等等很多信息.
再有就是这回测是如何设置的,例如回测的周期,滑点是多少,以什么价格计算,手续费的设置.开平仓信号等等.这些都没有.
再有这个策略回测的时间段太短了.
如果这是一个日线策略,回测的时段怎么的也得在15年左右.这样才能看出这个策略在,牛市,熊市,盘整等各种行情下的表现.
再有就是回测的品种,是回测所有股票,还是沪深300,或者中小版,创业板,是否剔除st.等等.
就算历史回测可以盈利,还要模拟交易观察.
就算回测模拟都通过了,模拟的环境和真实交易环境也是有很大差别的.
既然这策略能用通达信回测说明这策略已经能写成选股公式,或者专家指标了.
其实很简单你想验证这个策略好不好用,找个看得懂公式代码的,一看就明白这策略的交易思路了.

『陆』 如何利用excel回测量化投资策略

用excel回策量化策略,效率太低了,而且数据过大的话excel完成不了,可以利用现有的量化交易平台,如果非的用excel回策,你至少要学会各种技术指标,和如何用计算机语言描述走势行情分析,还需要会编辑回测所用的各种回测指标公式,你才能完成excel的量化回测,初学时可以用这个但,实际应用时,至少要用一套量化分析平台的软件,或者自己利用c语言,Python,等开发出一套量化分析软件。

『柒』 如何看待量化交易的回测

美股研究社指出:不同风格的策略对于回测的要求是不同的,比如对于多因子选股或者趋势策略等,需要注意的几点是:


1. 区分好样本内数据和样本外数据,这个和机器学习很类似,样本内数据用于训练,样本外数据用于校验。这样做的目的是为了避免过拟合陷阱。


2. 收益的分布,看看你回测后所有交易的收益分布,看看你的收益来源是少数的几次大的收益还是来源多次的小的收益。来源于大的收益,你的收益波动性就很大,实盘往往会达不到你的效果。


3. 参数的稳定性。如果你某个参数过敏感,随便调整下就对收益影响很大,那你实盘的情况和模拟盘也有很大可能会有出入。


这类策略严格来说,避免了一些常见的坑,还是比较容易做到回测和实盘类似的。
京东量化最新推出了一些通达信的技术指标还不错,你们可以去看一下,应该能学到好多东西。

『捌』 在国内做交易策略的回测的具体步骤是什么

交易策略回测属于量化交易,至于用什么工具看个人习惯,可以用量化交易平台,也可以用某些行情交易软件,也可以自己利用一门计算机语言,最简单的用excel,也可以进行回测分析。