当前位置:首页 » 交易平台 » 股票量化交易模型参数
扩展阅读
2017年长春高新股票价格 2025-07-05 16:57:40

股票量化交易模型参数

发布时间: 2022-04-13 12:04:36

⑴ 如何量化炒股

首先,可以通过学习量化策略来进行,主要包括多因子策略、统计套利、机器学习。

量化交易是一种新兴的系统化金融投资方法,它综合多个学科的知识,用先进的数学模型代替人的主观思维制定交易策略,利用计算机强大的运算力从庞大的股票、债券、 期货等历史数据中回测交易策略的盈亏“概率”,通过管理盈亏的“概率”帮助投资者做出准确的决策。

此外,我们可以通过数库多因子量化平台进行炒股,它会呈现出影响股价走势的相关因子,让投资者从中选取影响力高的因子,组合成量化策略,进行收益对比分析,得出最理想的股票组合。还可以自由添加、删除、收藏多个因子,仅需几秒钟就可以完成大量的数据运算,操作方便快捷。

潜在风险

量化交易一般会经过海量数据仿真测试和模拟操作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险最小化和收益最大化,但往往也会存在一定的潜在风险,具体包括:

1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。

2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。

3、网络中断,硬件故障也可能对量化交易产生影响。

4、同质模型产生竞争交易现象导致的风险。

5、单一投资品种导致的不可预测风险。

为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。

⑵ A股市场个人量化交易者,需要哪些工具

量化交易的前提是量化,而量化就是建立数学模型。数学模型是理解量化交易的前提。数学模型就是把具体事物数字化的过程,比如股票跌涨的统计图,如果没有统计图我们就必须通过研究具体的数字并且通过加减法去了解某只股票的近期走向,但当某一天有人发明了折线统计图,只要简单的把代表某个数字的点画出来然后连接起这些点,就可以一眼看出跌涨幅度。其实数学模型就是这样一种抽象现实事物的工具。
股票量化交易中的模型建立是非常复杂的,拥有非常多的参数,数据量也非常大,数据分析的过程也十分复杂。这样做的好处就是数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化交易技术盛行于现今多种金融交易机构当中,已经成为了机构交易当中占据重要地位的交易手法,然而散户如何能够跨过量化交易的门槛,成为一名量化交易者呢?答案就是使用策略炒股通软件平台进行交易。

⑶ 股票量化交易是什么

量化交易个以前的股票交易本质没有区别,只是提高了工作效率,
量化交易分为量化分析和程序化自动交易
量化分析,如果你是普通散户我现在问几个问题,第一MACD指标默认参数下,在三千多只股票日k上近两年那只收益最好,那只亏损最大。这要人工多大的工作量,如果会写程序代码,几行代码就解决了。在继续如果调换MACD参数能否增加收益用那几个参数是最优组合,这要是人工基本无法完成,计算量太大了,但计算机就很快完成了参数优化。
而且量化分析不是技术分析,例如你问一个价值投资者,三千多家上市公司,你知道有多少家连续10年都没亏损过吗,同样几行代码就知道。
假如你听了一个老师的讲课,说他的牛x战法,普散户听了你只能价单试试,但量化分析我可以在不同市场不同时间周期,不同品种,进行回测严重,优化。这些就是量化分析。
程序化自动交易。
就是利用计算机技术自动交易,这对于散户比较难实现,简单的用第三方然间写几个交易策略可以实现自动交易。
但当你交易上你就会发现,滑点问题,你的速度不够快,需要专线网络,需要底层语言的交易系统,高速的硬件设备。
但散户还是必须要进行量化学习因为这样才能更好的帮助你分析。
下图就是最简单的趋势指标

⑷ 股票量化交易是什么意思

股票量化交易,就是将股票市场所有的股票信息,比如股票的涨跌历史数据,成交量历史数据,股票的基本面历史数据,指数涨跌历史数据等等全部输入计算机,进行大数据分析,之后根据大数据选择出炒股成功率最高的方案,并设计成计算机自动操盘模式,称为量化交易。

量化交易
所谓量化交易,是指以先进的数学模型替代人为的主观判断,同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。

量化交易潜在风险
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。

⑸ 如何建立一个股票量化交易模型并仿真

研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。

⑹ 股票交易,如何建立确定的、机械的、量化的、交易系统,所谓的量化,到底指什么,又该如何量化

量化的意思,就是把某些指标数字化,易于控制。
举个例子,说股票下跌了可以买,这句话就难了,下跌多少呢?那么通过模型量化,比如当量能阶梯缩量到多少比例,以及价格跌穿多少日均线,并且未跌穿某长期均线的时候,发出买入指令。这个就是量化的过程。需要结合各种理论和经验才可以量化。

⑺ 散户如何做量化交易

量化交易是指投资者将交易策略的逻辑与参数经过电脑程序运算后,将交易策略系统化,然后通过电脑自动下单来完成交易。

在量化交易过程中,散户可以这样做:

1、根据个股的历史数据,进行多因子选股,比如,把市盈率、市净率、市销率等作为选股标准,选出一些价值被低估,或者处于合理区域的个股。

2、顺势交易,即在上涨的趋势中买入,在下跌的趋势中卖出。

3、进行合理的仓位管理,即采取漏斗形仓位管理法、矩形仓位管理法、金字塔形仓位管理法等,好应对个股后期的风险。

4、再根据个股的历史走势,寻找个股的支撑位和压力位,把它们作为止损、止盈点,即在压力位置,且获得收益的时候及时卖出;在跌破支撑位时,且股票亏损的时候及时卖出股票,避免更大的损失。

⑻ 量化交易都有哪些主要的策略模型

研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。

量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。 量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。

⑼ 股票量化是什么

股票量化即“量化交易”有两层含义:一是狭义的,指量化交易的内容,将交易条件转化为程序,自动下单;第二,广义上是指系统交易方式,是一个综合的交易系统。也就是说,根据一系列的交易条件,一个智能的辅助决策系统,将丰富的经验与交易条件相结合,在交易过程中管理风险控制。
通过量化交易制定策略的方法极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
具体如何理解股票量化交易,量化交易至少应该包括五个方面的要素:
(1)买入和卖出的信号系统。
(2)牛市还是熊市的方向指引,比如用200天移动平均线分辨熊市中系统风险的规避。
(3)头寸管理以及资金管理。
(4)风险控制,运用信号源来确定止损位置,利用资产曲线和权益曲线来加以判定和管理。
(5)投资组合,不一样的投资品种、不相同的交易系统(不同功能和参数,有快有慢)以及不相同时间周期组合,现分散组合,让交易账户波动更加稳定。以上就是关于如何理解股票量化交易的全部讲解。
量化投资和传统的定性投资本质上是一样的,都是建立在低效或弱有效市场的理论基础上。两者的区别在于:量化投资管理是“定性思维的定量应用”,更强调数据。
从量化交易的角度来看,目前国内多采用监督式机器学习。例如,我们将投资交易比作装配厂。手工交易就像工人手工完成的传统装配工作。量化交易就像把工厂改造成全自动装配车间。虽然在整个,组装过程中没有人的参与,但是设计师应该指定机器在顶级设计中应该在什么时候做什么。

⑽ 如何建立量化交易模型

量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统