㈠ 在中国,做量化交易一天的工作是怎样的
做量化交易一天的工作:
8:00~9:00: 打开交易策略,设置一些运营参数
9:00~9:30: 观察策略运转,确保没有问题
9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法
15:30~17:00: 分析交易记录, 确定第二天的交易计划
17:00~18:00: 运动
岗位职责:
分析金融市场(期货、股票等)数据,寻找可利用的机会;开发与维护量化交易策略;提供机器学习/数据挖掘相应的技术支持;
岗位要求:
1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;
理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);
有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;两年及以上实验室研究经验或研发类工作经验优先;
(1)股票量化交易知乎扩展阅读
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,
极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
㈡ 股市中的量化交易是什么意思呢
量化交易(quantitative Trading)是利用数学、统计、计算机的模型和方法来指导在金融市场的交易,可以自动下单业可以半自动下单,这个不是核心,核心在于是不是系统化交易(systematic trading)。
比如主观交易会看K线交易,量化交易业会,但区别在于量化交易可以在历史数据上回测各种交易规则,找到表现好的,然后才用来交易。这或许会有过度拟合的风险,但也有一些方法克服。
量化交易虽然有很多优点,但是真的能战胜市场,并且保证胜率,我觉得很难说。
㈢ 股市量化交易的方式适不适合散户
随着国内投资者整体素质的提高,量化程序化交易的人越来越多,建议国内有条件的投资者转向量化交易。
其中,程序化交易相对于股票而言,它更适合期货。推荐它的原因有以下:
降低人性弱点,对交易行为的影响。
每个人是性格和承受能力是不一样的。特别是主观交易者,很容易受到情绪的影响。
当出现大亏大赚的时候,如果处理不当,很可能造成两种极端,一种是被长时间打入冷宫,另一种是极度自信。
但是,程序化交易就不一样,比较理性,依靠程序可以最大限度的降低人性对整个交易的影响。比如扛单,恐惧等都会影响最后的交易结果。
程序化交易语言的选择。
想要实现程序化交易,必须要学一门语言。分为编程语言和非编程语言。
如果你是非科班,有没有精力学。那么可以选择非编程量化交易语言,比如交易开拓者TB,金字塔,MT4等语言,他们的主要用途是实现你的交易逻辑,而只能在其软件内使用该语言。
如果你是计算机科班出身,难么建议学习Python+一门非编程量化交易语言,作者推荐TB语言。
Python在量化交易,数据分析等方面用途非常广,相对于Java,PHP等来说,入门是相对容易,记住这里说的是入门,并不意味着它简单。
㈣ 什么是量化交易,未来前景如何知道的讲讲。
国外量化交易已经发展了40年左右,量化交易程序换交易占比60%,量化基金规模达到30个亿美元,而国内量化交易起步较晚第一只量化基金在2004年左右,至今量化交易规模不过2万亿RMB,国内现在的量化人才也很缺失,随着过来一批量化交易的海龟回来从事量化交易会一定程度带动行业的发展,但是仍需一定时间,加上国内量化交易政策还不够明朗,整体来说量化交易在国内还是一年蓝海,但是路途并非坦途。
㈤ 股票量化交易是什么意思
股票量化交易,就是将股票市场所有的股票信息,比如股票的涨跌历史数据,成交量历史数据,股票的基本面历史数据,指数涨跌历史数据等等全部输入计算机,进行大数据分析,之后根据大数据选择出炒股成功率最高的方案,并设计成计算机自动操盘模式,称为量化交易。
量化交易
所谓量化交易,是指以先进的数学模型替代人为的主观判断,同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。
量化交易潜在风险
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
㈥ 股市量化交易什么意思
“量化交易”有两层含义:一是狭义的,指量化交易的内容,将交易条件转化为程序,自动下单;第二,广义上是指系统交易方式,是一个综合的交易系统。也就是说,根据一系列的交易条件,一个智能的辅助决策系统,将丰富的经验与交易条件相结合,在交易过程中管理风险控制。
拓展资料:
在A股市场上,股票买卖遵循以下的交易规则:
T+1交易方式,即当天买入的股票,需要下一个交易日卖出。
买入最小单位为1手,即100股,且必须每次买入的数量必须是100股的整数倍,卖出可以不整100股卖出,但是不足100股的部分,必须一次性卖出。
遵循“时间优先,价格优先”的原则,即较高买进申报优先满足于较低买进申报,较低卖出申报优先满足于较高卖出申报;同价位申报,先申报者优先满足。
除此之外,在a股市场上,投资者只能进行做多操作,不能进行做空操作;其委托交易时,其委托价格必须在个股的当天涨跌幅限制内,否则无效;委托单在当日的交易时间内有效,收盘之后,其委托单无效。
涨跌幅限制:
新股上市及重组成功上市股票首日无涨跌幅限制,一般情况下涨跌幅限制为前一交易日收市价上下10%,即一个交易日最大振幅为20%。
ST股票及*ST股票涨跌幅限制为前一交易日收市价上下5%,即一个交易日最大振幅为10%。股票涨(跌)幅价格=股票前一日收盘价格×10%(或5%)。
权证涨跌幅限制权证涨(跌)幅价格=标的证券前日涨(跌)幅价格×125%×行权比例。
具体交易时间规定:
每周一至周五,每天上午9:30至11:30,下午1:00至3:00,法定假期除外。
集合竞价:上午9:15——9:25,其中9:15——9:20可以撤单,9:20——9:25不能撤单,9:25以成交量最大的价格为开盘价。
连续竞价:上午9:30——11:30,下午1:00——3:00
成交顺序:
价格优先——较高价格买进申报优先于较低价格买进申报,较低价格卖出申报优先于较高价格卖出申报;
时间优先——买卖方向、价格相同的,先申报者优先于后申报者。先后顺序按交易主机接受申报的时间确定。
㈦ 股票量化交易是什么
量化交易个以前的股票交易本质没有区别,只是提高了工作效率,
量化交易分为量化分析和程序化自动交易
量化分析,如果你是普通散户我现在问几个问题,第一MACD指标默认参数下,在三千多只股票日k上近两年那只收益最好,那只亏损最大。这要人工多大的工作量,如果会写程序代码,几行代码就解决了。在继续如果调换MACD参数能否增加收益用那几个参数是最优组合,这要是人工基本无法完成,计算量太大了,但计算机就很快完成了参数优化。
而且量化分析不是技术分析,例如你问一个价值投资者,三千多家上市公司,你知道有多少家连续10年都没亏损过吗,同样几行代码就知道。
假如你听了一个老师的讲课,说他的牛x战法,普散户听了你只能价单试试,但量化分析我可以在不同市场不同时间周期,不同品种,进行回测严重,优化。这些就是量化分析。
程序化自动交易。
就是利用计算机技术自动交易,这对于散户比较难实现,简单的用第三方然间写几个交易策略可以实现自动交易。
但当你交易上你就会发现,滑点问题,你的速度不够快,需要专线网络,需要底层语言的交易系统,高速的硬件设备。
但散户还是必须要进行量化学习因为这样才能更好的帮助你分析。
下图就是最简单的趋势指标
㈧ 股票量化交易有用吗哪一家做的比较好
现在市面上的量化交易APP大多是分析软件,真正能够直接参与交易的很少。相对于人性操作来说,量化交易刨除人性,做计划之内的事情。真正意义上实现价值投资,比纯人为的追涨杀跌要好很多。
我用过的壳子量化这个软件还是不错的,他里面有多个模型,可以自己选择。针对新人,里面支持模拟,可以先使用模拟盘体验一下量化交易带来的不同。
㈨ 股票量化是什么意思
所谓量化交易,是指以先进的数学模型替代人为的主观判断,同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。
拓展资料:
一、量化交易特点
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
二、量化交易潜在风险
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
㈩ 股票量化是什么
股票量化即“量化交易”有两层含义:一是狭义的,指量化交易的内容,将交易条件转化为程序,自动下单;第二,广义上是指系统交易方式,是一个综合的交易系统。也就是说,根据一系列的交易条件,一个智能的辅助决策系统,将丰富的经验与交易条件相结合,在交易过程中管理风险控制。
通过量化交易制定策略的方法极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
具体如何理解股票量化交易,量化交易至少应该包括五个方面的要素:
(1)买入和卖出的信号系统。
(2)牛市还是熊市的方向指引,比如用200天移动平均线分辨熊市中系统风险的规避。
(3)头寸管理以及资金管理。
(4)风险控制,运用信号源来确定止损位置,利用资产曲线和权益曲线来加以判定和管理。
(5)投资组合,不一样的投资品种、不相同的交易系统(不同功能和参数,有快有慢)以及不相同时间周期组合,现分散组合,让交易账户波动更加稳定。以上就是关于如何理解股票量化交易的全部讲解。
量化投资和传统的定性投资本质上是一样的,都是建立在低效或弱有效市场的理论基础上。两者的区别在于:量化投资管理是“定性思维的定量应用”,更强调数据。
从量化交易的角度来看,目前国内多采用监督式机器学习。例如,我们将投资交易比作装配厂。手工交易就像工人手工完成的传统装配工作。量化交易就像把工厂改造成全自动装配车间。虽然在整个,组装过程中没有人的参与,但是设计师应该指定机器在顶级设计中应该在什么时候做什么。