Ⅰ 美股的交易数量是怎么样的,一次可以交易一股么
美股的交易以一股为单位,一股两股都可以交易,美股是以交易次数为收费依据的,所以要交易时要考虑到交易费用。有的股票比如巴菲特公司的股票一股要几十万美元,一般人一股都买不起,所以也可以把一股拆分为若干等份,每一份几千美元。
股票(基金)单笔申报最大数量应当低于100万股(份),债券单笔申报最大数量应当低于1万手(含1万手)。交易所可以根据需要调整不同种类或流通量的单笔申报最大数量。
买入股票或基金,申报数量应当为100股(份)或其整数倍。美股的交易数量其实美股研究社都有讲解分析一次可以交易一股,这是可以的。债券以人民币1000元面额为1手。债券回购以1000元标准券或综合券为1手。债券和债券回购以1手或其整数倍进行申报,其中,上海证券交易所债券回购以100手或其整数倍进行申报。
抛售股票时,没有手数限制,最大量限制为一万手。
买入委托,必须是100股的整数倍。卖出委托,可以不是100股的整数倍。比如你有150股,那么可以委托卖出150股。但不可以只委托卖出50股,因为股票零头,不能拆开来单独委托,零头只能随整数一起委托。如果没有整100的股票,只有50股,那么就可以只委托50股卖出。
股票交易卖出委托,如果你的持仓股票没有零头,就必须是委托100股的整数倍,单笔委托最高100万股。如果你的持仓股票有零头,则委托卖出可以把零头带上。买入委托,必须是100股的整数倍。
Ⅱ 如何查看美国股票历年到现在的实时K线图
查看方法:建议使用同花顺,可以查看美国历年K线。还能看到全球股市的其他市场K线,还可以时实滚动。
K线图又称蜡烛图、日本线、阴阳线、棒线、红黑线等,常用说法是“K线”。它是以每个分析周期的开盘价、最高价、最低价和收盘价绘制而成。
K线图是技术分析的一种,最早日本人于十九世纪所创,起源于日本十八世纪德川幕府时代(1603~1867年)的米市交易,用来计算米价每天的涨跌,被当时日本米市的商人用来记录米市的行情与价格波动,包括开市价、收市价、最高价及最低价,阳烛代表当日升市,阴烛代表跌市。这种图表分析法在当时的中国以至整个东南亚地区均尤为流行。由于用这种方法绘制出来的图表形状颇似一根根蜡烛,加上这些蜡烛有黑白之分,因而也叫阴阳线图表。通过K线图,人们能够把每日或某一周期的市况表现完全记录下来,股价经过一段时间的盘档后,在图上即形成一种特殊区域或形态,不同的形态显示出不同意义。可以从这些形态的变化中摸索出一些有规律的东西出来 。K线图形态可分为反转形态、整理形态及缺口和趋向线等。后K线图因其细腻独到的标画方式而被引入到股市及期货市场。股市及期货市场中的K线图的画法包含四个数据,即开盘价、最高价、最低价、收盘价,所有的k线都是围绕这四个数据展开,反映大势的状况和价格信息。如果把每日的K线图放在一张纸上,就能得到日K线图,同样也可画出周K线图、月K线图。
Ⅲ 美国股票市场有多少支股票
刚刚在财大师上面查了一下
美国有交易所三家共7679家股票总数股
1纽约证券交易所NYSE。有3459家股票股。
2美国证券交易所AMEX。有1061家股票股。
3纳斯达克证券市场Nasda。有3159家股票股。
Ⅳ 美国股票市场价格指数有哪些
股票价格指数(stock index)是描述股票市场总的价格水平变化的指标。它是选取有代表性的一组股票,把他们的价格进行加权平均,通过一定的计算得到。各种指数具体的股票选取和计算方法是不同的。
纽约证券交易所股票价格指数。这是由纽约证券交易所编制的股票价格指数。它起自1966年6月,先是普通股股票价格指数,后来改为混合指数,包括着在纽约证券交易所上市的1500家公司的1570种股票。具体计算方法是将这些股票按价格高低分开排列,分别计算工业股票、金融业股票、公用事业股票、运输业股票的价格指数,最大和最广泛的是工业股票价格指数,由1093种股票组成;金融业股票价格指数包括投资公司、储蓄贷款协会、分期付款融资公司、商业银行、保险公司和不动产公司的223种股票;运输业股票价格指数包括铁路、航空、轮船、汽车等公司的65种股票;公用事业股票价格指数则有电话电报公司、煤气公司、电力公司和邮电公司的189种股票。
纽约股票价格指数是以1965年12月31日确定的50点为基数,采用的是综合指数形式。纽约证券交易所每半个小时公布一次指数的变动情况。虽然纽约证券交易所编制股票价格指数的时间不长,因它可以全面及时地反映其股票市场活动的综合状况,较为受投资者欢迎。
Ⅳ 如何用大数据炒股
我们如今生活在一个数据爆炸的世界里。网络每天响应超过60亿次的搜索请求,日处理数据超过100PB,相当于6000多座中国国家图书馆的书籍信息量总和。新浪微博每天都会发布上亿条微博。在荒无人烟的郊外,暗藏着无数大公司的信息存储中心,24小时夜以继日地运转着。
克托·迈尔-舍恩伯格在《大数据时代》一书中认为,大数据的核心就是预测,即只要数据丰富到一定程度,就可预测事情发生的可能性。例如,“从一个人乱穿马路时行进的轨迹和速度来看他能及时穿过马路的可能性”,或者通过一个人穿过马路的速度,预测车子何时应该减速从而让他及时穿过马路。
那么,如果把这种预测能力应用在股票投资上,又会如何?
目前,美国已经有许多对冲基金采用大数据技术进行投资,并且收获甚丰。中国的中证广发网络百发100指数基金(下称百发100),上线四个多月以来已上涨68%。
和传统量化投资类似,大数据投资也是依靠模型,但模型里的数据变量几何倍地增加了,在原有的金融结构化数据基础上,增加了社交言论、地理信息、卫星监测等非结构化数据,并且将这些非结构化数据进行量化,从而让模型可以吸收。
由于大数据模型对成本要求极高,业内人士认为,大数据将成为共享平台化的服务,数据和技术相当于食材和锅,基金经理和分析师可以通过平台制作自己的策略。
量化非结构数据
不要小看大数据的本领,正是这项刚刚兴起的技术已经创造了无数“未卜先知”的奇迹。
2014年,网络用大数据技术预测命中了全国18卷中12卷高考作文题目,被网友称为“神预测”。网络公司人士表示,在这个大数据池中,包含互联网积累的用户数据、历年的命题数据以及教育机构对出题方向作出的判断。
在2014年巴西世界杯比赛中,Google亦通过大数据技术成功预测了16强和8强名单。
从当年英格兰报社的信鸽、费城股票交易所的信号灯到报纸电话,再到如今的互联网、云计算、大数据,前沿技术迅速在投资领域落地。在股票策略中,大数据日益崭露头角。
做股票投资策略,需要的大数据可以分为结构化数据和非结构化数据。结构化数据,简单说就是“一堆数字”,通常包括传统量化分析中常用的CPI、PMI、市值、交易量等专业信息;非结构化数据就是社交文字、地理位置、用户行为等“还没有进行量化的信息”。
量化非结构化就是用深度模型替代简单线性模型的过程,其中所涉及的技术包括自然语言处理、语音识别、图像识别等。
金融大数据平台-通联数据CEO王政表示,通联数据采用的非结构化数据可以分为三类:第一类和人相关,包括社交言论、消费、去过的地点等;第二类与物相关,如通过正在行驶的船只和货车判断物联网情况;第三类则是卫星监测的环境信息,包括汽车流、港口装载量、新的建筑开工等情况。
卫星监测信息在美国已被投入使用,2014年Google斥资5亿美元收购了卫星公司Skybox,从而可以获得实施卫星监测信息。
结构化和非结构化数据也常常相互转化。“结构化和非结构化数据可以形象理解成把所有数据装在一个篮子里,根据应用策略不同相互转化。例如,在搜索频率调查中,用户搜索就是结构化数据;在金融策略分析中,用户搜索就是非结构化数据。”网络公司人士表示。
华尔街拿着丰厚薪水的分析师们还不知道,自己的雇主已经将大量资本投向了取代自己的机器。
2014年11月23日,高盛向Kensho公司投资1500万美元,以支持该公司的大数据平台建设。该平台很像iPhone里的Siri,可以快速整合海量数据进行分析,并且回答投资者提出的各种金融问题,例如“下月有飓风,将对美国建材板块造成什么影响?”
在Kensho处理的信息中,有80%是“非结构化”数据,例如政策文件、自然事件、地理环境、科技创新等。这类信息通常是电脑和模型难以消化的。因此,Kensho的CEO Daniel Nadler认为,华尔街过去是基于20%的信息做出100%的决策。
既然说到高盛,顺便提一下,这家华尔街老牌投行如今对大数据可谓青睐有加。除了Kensho,高盛还和Fortress信贷集团在两年前投资了8000万美元给小额融资平台On Deck Capital。这家公司的核心竞争力也是大数据,它利用大数据对中小企业进行分析,从而选出值得投资的企业并以很快的速度为之提供短期贷款。
捕捉市场情绪
上述诸多非结构化数据,归根结底是为了获得一个信息:市场情绪。
在采访中,2013年诺贝尔经济学奖得主罗伯特•席勒的观点被无数采访对象引述。可以说,大数据策略投资的创业者们无一不是席勒的信奉者。
席勒于上世纪80年代设计的投资模型至今仍被业内称道。在他的模型中,主要参考三个变量:投资项目计划的现金流、公司资本的估算成本、股票市场对投资的反应(市场情绪)。他认为,市场本身带有主观判断因素,投资者情绪会影响投资行为,而投资行为直接影响资产价格。
然而,在大数据技术诞生之前,市场情绪始终无法进行量化。
回顾人类股票投资发展史,其实就是将影响股价的因子不断量化的过程。
上世纪70年代以前,股票投资是一种定性的分析,没有数据应用,而是一门主观的艺术。随着电脑的普及,很多人开始研究驱动股价变化的规律,把传统基本面研究方法用模型代替,市盈率、市净率的概念诞生,量化投资由此兴起。
量化投资技术的兴起也带动了一批华尔街大鳄的诞生。例如,巴克莱全球投资者(BGI)在上世纪70年代就以其超越同行的电脑模型成为全球最大的基金管理公司;进入80年代,另一家基金公司文艺复兴(Renaissance)年均回报率在扣除管理费和投资收益分成等费用后仍高达34%,堪称当时最佳的对冲基金,之后十多年该基金资产亦十分稳定。
“从主观判断到量化投资,是从艺术转为科学的过程。”王政表示,上世纪70年代以前一个基本面研究员只能关注20只到50只股票,覆盖面很有限。有了量化模型就可以覆盖所有股票,这就是一个大的飞跃。此外,随着计算机处理能力的发展,信息的用量也有一个飞跃变化。过去看三个指标就够了,现在看的指标越来越多,做出的预测越来越准确。
随着21世纪的到来,量化投资又遇到了新的瓶颈,就是同质化竞争。各家机构的量化模型越来越趋同,导致投资结果同涨同跌。“能否在看到报表数据之前,用更大的数据寻找规律?”这是大数据策略创业者们试图解决的问题。
于是,量化投资的多米诺骨牌终于触碰到了席勒理论的第三层变量——市场情绪。
计算机通过分析新闻、研究报告、社交信息、搜索行为等,借助自然语言处理方法,提取有用的信息;而借助机器学习智能分析,过去量化投资只能覆盖几十个策略,大数据投资则可以覆盖成千上万个策略。
基于互联网搜索数据和社交行为的经济预测研究,已逐渐成为一个新的学术热点,并在经济、社会以及健康等领域的研究中取得了一定成果。在资本市场应用上,研究发现搜索数据可有效预测未来股市活跃度(以交易量指标衡量)及股价走势的变化。
海外就有学术研究指出,公司的名称或者相关关键词的搜索量,与该公司的股票交易量正相关。德国科学家Tobias Preis就进行了如此研究:Tobias利用谷歌搜索引擎和谷歌趋势(Google Trends),以美国标普500指数的500只股票为其样本,以2004年至2010年为观察区间,发现谷歌趋势数据的公司名称搜索量和对应股票的交易量,在每周一次的时间尺度上有高度关联性。也就是说,当某个公司名称在谷歌的搜索量活动增加时,无论股票的价格是上涨或者下跌,股票成交量与搜索量增加;反之亦然,搜索量下降,股票成交量下降。以标普500指数的样本股为基础,依据上述策略构建的模拟投资组合在六年的时间内获得了高达329%的累计收益。
在美国市场上,还有多家私募对冲基金利用Twitter和Facebook的社交数据作为反映投资者情绪和市场趋势的因子,构建对冲投资策略。利用互联网大数据进行投资策略和工具的开发已经成为世界金融投资领域的新热点。
保罗·霍丁管理的对冲基金Derwent成立于2011年5月,注册在开曼群岛,初始规模约为4000万美元, 2013年投资收益高达23.77%。该基金的投资标的包括流动性较好的股票及股票指数产品。
通联数据董事长肖风在《投资革命》中写道,Derwent的投资策略是通过实时跟踪Twitter用户的情绪,以此感知市场参与者的“贪婪与恐惧”,从而判断市场涨跌来获利。
在Derwent的网页上可以看到这样一句话:“用实时的社交媒体解码暗藏的交易机会。”保罗·霍丁在基金宣传册中表示:“多年以来,投资者已经普遍接受一种观点,即恐惧和贪婪是金融市场的驱动力。但是以前人们没有技术或数据来对人类情感进行量化。这是第四维。Derwent就是要通过即时关注Twitter中的公众情绪,指导投资。”
另一家位于美国加州的对冲基金MarketPsych与汤普森·路透合作提供了分布在119个国家不低于18864项独立指数,比如每分钟更新的心情状态(包括乐观、忧郁、快乐、害怕、生气,甚至还包括创新、诉讼及冲突情况等),而这些指数都是通过分析Twitter的数据文本,作为股市投资的信号。
此类基金还在不断涌现。金融危机后,几个台湾年轻人在波士顿组建了一家名为FlyBerry的对冲基金,口号是“Modeling the World(把世界建模)”。它的投资理念全部依托大数据技术,通过监测市场舆论和行为,对投资做出秒速判断。
关于社交媒体信息的量化应用,在股票投资之外的领域也很常见:Twitter自己也十分注重信息的开发挖掘,它与DataSift和Gnip两家公司达成了一项出售数据访问权限的协议,销售人们的想法、情绪和沟通数据,从而作为顾客的反馈意见汇总后对商业营销活动的效果进行判断。从事类似工作的公司还有DMetics,它通过对人们的购物行为进行分析,寻找影响消费者最终选择的细微原因。
回到股票世界,利用社交媒体信息做投资的公司还有StockTwits。打开这家网站,首先映入眼帘的宣传语是“看看投资者和交易员此刻正如何讨论你的股票”。正如其名,这家网站相当于“股票界的Twitter”,主要面向分析师、媒体和投资者。它通过机器和人工相结合的手段,将关于股票和市场的信息整理为140字以内的短消息供用户参考。
此外,StockTwits还整合了社交功能,并作为插件可以嵌入Twitter、Facebook和LinkedIn等主要社交平台,让人们可以轻易分享投资信息。
另一家公司Market Prophit也很有趣。这家网站的宣传语是“从社交媒体噪音中提炼市场信号”。和StockTwits相比,Market Prophit更加注重大数据的应用。它采用了先进的语义分析法,可以将Twitter里的金融对话量化为“-1(极度看空)”到“1(极度看多)”之间的投资建议。网站还根据语义量化,每天公布前十名和后十名的股票热度榜单。网站还设计了“热度地图”功能,根据投资者情绪和意见,按照不同板块,将板块内的个股按照颜色深浅进行标注,谁涨谁跌一目了然。
中国原创大数据指数
尽管大数据策略投资在美国貌似炙手可热,但事实上,其应用尚仅限于中小型对冲基金和创业平台公司。大数据策略投资第一次被大规模应用,应归于中国的百发100。
网络金融中心相关负责人表示,与欧美等成熟资本市场主要由理性机构投资者构成相比,东亚尤其是中国的股票类证券投资市场仍以散户为主,因此市场受投资者情绪和宏观政策性因素影响很大。而个人投资者行为可以更多地反映在互联网用户行为大数据上,从而为有效地预测市场情绪和趋势提供了可能。这也就是中国国内公募基金在应用互联网大数据投资方面比海外市场并不落后、甚至领先的原因。
百发100指数由网络、中证指数公司、广发基金联合研发推出,于2014年7月8日正式对市场发布,实盘运行以来一路上涨,涨幅超过60%。跟踪该指数的指数基金规模上限为30亿份,2014年9月17日正式获批,10月20日发行时一度创下26小时疯卖18亿份的“神话”。
外界都知道百发100是依托大数据的指数基金,但其背后的细节鲜为人知。
百发100数据层面的分析分为两个层面,即数据工厂的数据归集和数据处理系统的数据分析。其中数据工厂负责大数据的收集分析,例如将来源于互联网的非结构化数据进行指标化、产品化等数据量化过程;数据处理系统,可以在数据工厂递交的大数据中寻找相互统计关联,提取有效信息,最终应用于策略投资。
“其实百发100是在传统量化投资技术上融合了基于互联网大数据的市场走势和投资情绪判断。”业内人士概括道。
和传统量化投资类似,百发100对样本股的甄选要考虑财务因子、基本面因子和动量因子,包括净资产收益率(ROE)、资产收益率(ROA)、每股收益增长率(EPS)、流动负债比率、企业价值倍数(EV/EBITDA)、净利润同比增长率、股权集中度、自由流通市值以及最近一个月的个股价格收益率和波动率等。
此外,市场走势和投资情绪是在传统量化策略基础上的创新产物,也是百发100的核心竞争力。接近网络的人士称,市场情绪因子对百发100基金起决定性作用。
网络金融中心相关负责人是罗伯特•席勒观点的支持者。他认为,投资者行为和情绪对资产价格、市场走势有着巨大的影响。因此“通过互联网用户行为大数据反映的投资市场情绪、宏观经济预期和走势,成为百发100指数模型引入大数据因子的重点”。
传统量化投资主要着眼点在于对专业化金融市场基本面和交易数据的应用。但在网络金融中心相关业务负责人看来,无论是来源于专业金融市场的结构化数据,还是来源于互联网的非结构化数据,都是可以利用的数据资源。因此,前文所述的市场情绪数据,包括来源于互联网的用户行为、搜索量、市场舆情、宏观基本面预期等等,都被网络“变废为宝”,从而通过互联网找到投资者参与特征,选出投资者关注度较高的股票。
“与同期沪深300指数的表现相较,百发100更能在股票市场振荡时期、行业轮动剧烈时期、基本面不明朗时期抓住市场热点、了解投资者情绪、抗击投资波动风险。”网络金融中心相关负责人表示。
百发100选取的100只样本股更换频率是一个月,调整时间为每月第三周的周五。
业内人士指出,百发100指数的月收益率与中证100、沪深300、中证500的相关性依次提升,说明其投资风格偏向中小盘。
但事实并非如此。从样本股的构成来说,以某一期样本股为例,样本股总市值6700亿元,占A股市值4.7%。样本股的构成上,中小板21只,创业板4只,其余75只样本股均为大盘股。由此可见,百发100还是偏向大盘为主、反映主流市场走势。
样本股每个月的改变比例都不同,最极端的时候曾经有60%进行了换仓。用大数据预测热点变化,市场热点往往更迭很快;但同时也要考虑交易成本。两方面考虑,网络最后测算认为一个月换一次仓位为最佳。
样本股对百发100而言是核心机密——据说“全世界只有基金经理和指数编制机构负责人两个人知道”——都是由机器决定后,基金经理分配给不同的交易员建仓买入。基金经理也没有改变样本股的权利。
展望未来,网络金融中心相关负责人踌躇满志,“百发100指数及基金的推出,只是我们的开端和尝试,未来将形成多样化、系列投资产品。”
除了百发100,目前市场上打着大数据旗帜的基金还有2014年9月推出的南方-新浪I100和I300指数基金。
南方-新浪I100和I300是由南方基金、新浪财经和深圳证券信息公司三方联合编制的。和百发100类似,也是按照财务因子和市场情绪因子进行模型打分,按照分值将前100和前300名股票构成样本股。推出至今,这两个指数基金分别上涨了10%左右。
正如百发100的市场情绪因子来自网络,南方-新浪I100和I300的市场情绪因子全部来自新浪平台。其中包括用户在新浪财经对行情的访问热度、对股票的搜索热度;用户在新浪财经对股票相关新闻的浏览热度;股票相关微博的多空分析数据等。
此外,阿里巴巴旗下的天弘基金也有意在大数据策略上做文章。据了解,天弘基金将和阿里巴巴合作,推出大数据基金产品,最早将于2015年初问世。
天弘基金机构产品部总经理刘燕曾对媒体表示,“在传统的调研上,大数据将贡献于基础资产的研究,而以往过度依赖线下研究报告。大数据将视野拓展至了线上的数据分析,给基金经理选股带来新的逻辑。”
在BAT三巨头中,腾讯其实是最早推出指数基金的。腾讯与中证指数公司、济安金信公司合作开发的“中证腾安价值100指数”早在2013年5月就发布了,号称是国内第一家由互联网媒体与专业机构编制发布的A股指数。不过,业内人士表示,有关指数并没有真正应用大数据技术。虽然腾讯旗下的微信是目前最热的社交平台,蕴藏了大量的社交数据,但腾讯未来怎么开发,目前还并不清晰。
大数据投资平台化
中欧商学院副教授陈威如在其《平台战略》一书中提到,21世纪将成为一道分水岭,人类商业行为将全面普及平台模式,大数据金融也不例外。
然而,由于大数据模型对成本要求极高,就好比不可能每家公司都搭建自己的云计算系统一样,让每家机构自己建设大数据模型,从数据来源和处理技术方面看都是不现实的。业内人士认为,大数据未来必将成为平台化的服务。
目前,阿里、网络等企业都表示下一步方向是平台化。
蚂蚁金服所致力搭建的平台,一方面包括招财宝一类的金融产品平台,另一方面包括云计算、大数据服务平台。蚂蚁金服人士说,“我们很清楚自己的优势不是金融,而是包括电商、云计算、大数据等技术。蚂蚁金服希望用这些技术搭建一个基础平台,把这些能力开放出去,供金融机构使用。”
网络亦是如此。接近网络的人士称,未来是否向平台化发展,目前还在讨论中,但可以确定的是,“网络不是金融机构,目的不是发产品,百发100的意义在于打造影响力,而非经济效益。”
当BAT还在摸索前行时,已有嗅觉灵敏者抢占了先机,那就是通联数据。
通联数据股份公司(DataYes)由曾任博时基金副董事长肖风带队创建、万向集团投资成立,总部位于上海,公司愿景是“让投资更容易,用金融服务云平台提升投资管理效率和投研能力”。该平台7月上线公测,目前已拥有130多家机构客户,逾万名个人投资者。
通联数据目前有四个主要平台,分别是通联智能投资研究平台、通联金融大数据服务平台、通联多资产投资管理平台和金融移动办公平台。
通联智能投资研究平台包括雅典娜-智能事件研究、策略研究、智能研报三款产品,可以对基于自然语言的智能事件进行策略分析,实时跟踪市场热点,捕捉市场情绪。可以说,和百发100类似,其核心技术在于将互联网非结构化数据的量化使用。
通联金融大数据服务平台更侧重于专业金融数据的分析整理。它可以提供公司基本面数据、国内外主要证券、期货交易所的行情数据、公司公告数据、公关经济、行业动态的结构化数据、金融新闻和舆情的非结构化数据等。
假如将上述两个平台比作“收割机”,通联多资产投资管理平台就是“厨房”。在这个“厨房”里,可以进行全球跨资产的投资组合管理方案、订单管理方案、资产证券化定价分析方案等。
通联数据可以按照主题热点或者自定义关键字进行分析,构建知识图谱,将相关的新闻和股票提取做成简洁的分析框架。例如用户对特斯拉感兴趣,就可以通过主题热点看到和特斯拉相关的公司,并判断这个概念是否值得投资。“过去这个搜集过程要花费几天时间,现在只需要几分钟就可以完成。”王政表示。
“通联数据就好比一家餐馆,我们把所有原料搜集来、清洗好、准备好,同时准备了一个锅,也就是大数据存储平台。研究员和基金经理像厨师一样,用原料、工具去‘烹制’自己的策略。”王政形容道。
大数据在平台上扮演的角色,就是寻找关联关系。人类总是习惯首先构建因果关系,继而去倒推和佐证。机器学习则不然,它可以在海量数据中查获超越人类想象的关联关系。正如维克托`迈尔-舍恩伯格在《大数据时代》中所提到的,社会需要放弃它对因果关系的渴求,而仅需关注相互关系。
例如,美国超市沃尔玛通过大数据分析,发现飓风用品和蛋挞摆在一起可以提高销量,并由此创造了颇大的经济效益。如果没有大数据技术,谁能将这毫无关联的两件商品联系在一起?
通联数据通过机器学习,也能找到传统量化策略无法发现的市场联系。其中包括各家公司之间的资本关系、产品关系、竞争关系、上下游关系,也包括人与人之间的关系,例如管理团队和其他公司有没有关联,是否牵扯合作等。
未来量化研究员是否将成为一个被淘汰的职业?目前研究员的主要工作就是收集整理数据,变成投资决策,而之后这个工作将更多由机器完成。
“当初医疗科技发展时,人们也认为医生会被淘汰,但其实并不会。同理,研究员也会一直存在,但他们会更注重深入分析和调研,初级的数据搜集可以交给机器完成。”王政表示。
但当未来大数据平台并广泛应用后,是否会迅速挤压套利空间?这也是一个问题。回答根据网上资料整理
Ⅵ 美国有哪几个股票交易市场
纽约股票交易所 ( New York Stock Exchange )、美国证券交易所( American Stock Exchange )、纳斯达克证券交易所、柜台交易市场、粉单。
1、纽约股票交易所
纽约证券交易所是上市公司总市值第一(2009年数据),IPO数量及市值第一(2009年数据),交易量第二(2008年数据)的交易所。
在2005年4月末,NYSE收购全电子证券交易所(Archipelago),成为一个盈利性机构。
有大约2,800间公司在此上市,全球市值15万亿美元。至2004年7月,三十间处于道琼斯工业平均指数中的公司除了英特尔和微软之外都在NYSE上市。
2018年12月,世界品牌实验室发布《2018世界品牌500强》榜单,纽约证券交易所排名第372。
2、美国证券交易所
美国证券交易所(AMEX)过去曾是全美国第二大证券交易所,坐落于纽约的华尔街附近,现为美国第三大股票交易所。
美国证券交易所大致上的营业模式和纽约证券交易所一样。但是不同的是,美国证券交易所是唯一一家能同时进行股票、期权和衍生产品交易的交易所,也是唯一一家关注于易被人忽略的中小市值公司并为其提供一系列服务来增加其关注度的交易所。
美交所通过和中小型上市公司形成战略合作伙伴关系来帮助其提升公司管理层和股东的价值,并保证所有的上市公司都有一个公平及有序的市场交易环境。
3、纳斯达克证券交易所
全称为美国全国证券交易商协会自动报价表(National Association of Securities Dealers Automated Quotations),是美国的一个电子证券交易机构,是由纳斯达克股票市场公司所拥有与操作的。
NASDAQ是全国证券业协会行情自动传报系统的缩写,创立于1971年,迄今已成为世界最大的股票市场之一。
2018年12月,世界品牌实验室编制的《2018世界品牌500强》揭晓,纳斯达克排名第176。
(6)美国股票交易大数据扩展阅读:
美国股票市场的基本特点为:
1、规模大、市场成熟、运作规范、股价稳定。经过数百年的市场规范运作,呈现出一种成熟市场的特征。主要表现在股价水平与股价波动方面。
2、证券市场管理严格、规范。美国证券市场的管理为注册制,其证券业的法规管制十分严格,联邦和州立法机关颁布了各种法规来管制这一领域的经济活动。
3、美国允许外国股份公司在美国证券市场发行股票并进行交易。在美国证券交易管理委员会下面设有专门负责外国发行人证券发行的“国际公司融资科”。
一般说来,外国公司的股份可以以下列3种方式在美国持有并进行交易:第一,外国公司在其本国所发行的股票;第二,外国公司向美国市场特别发行的股票;第三,美国存股证(ADR)。
4、美国有众多的交易所。其中属全国性证交所的有纽约证交所和美国证券交易所(AMEX)。;
地区性证交所有10多家,如波士顿证交所、辛辛那提证交所、中西部证交所、太平洋证交所、费城证交所、山间证交所和斯波克纳证交所等。纽约证交所是全国最大的证交所,其交易量占全部证交所交易总量的70%一80%。
5、美国发达的场外交易。美国场外交易由全美证券交易商协会管理,该协会有3000个证券交易商,500个证券经纪人和很多投资银行家。
1971年为提高场外交易的效率,美国建立了全美证券交易商协会自动报价系统(NASDAQ),目前是仅次于纽约证交所和日本东京证交所的世界第三个重要的证券交易系统。
6、美国的股价指数。在美国,股票价格指数很多,主要有:道·琼斯股价平均数,标准一普尔500种股价指数、美国证券交易所股价指数和全美证券交易商协会自动报价系统股价指数。
纳斯达克的特点是收集和发布场外交易非上市股票的证券商报价。它现已成为全球最大的证券交易市场。目前的上市公司有5200多家。
纳斯达克又是全世界第一个采用电子交易的股市,它在55个国家和地区设有26万多个计算机销售终端。
纳斯达克指数是反映纳斯达克证券市场行情变化的股票价格平均指数,基期为1971年2月8日,基值为lOO。纳斯达克的上市公司涵盖所有新技术行业,包括软件和计算机、电信、生物技术、零售和批发贸易等。
美国证券交易所股价指数是用于衡量在美国证交所上市的所有普通股、美国存股证和认股凭证总市价的变动情况。
参考资料来源:网络-美国股票市场
Ⅶ 美国股市每天成交额大概是多少
一般美国股市报出的成交量以股数为多,很少报出成交多少亿。
例如2009年7月31日 美国纽约交易所总成交 6,220,794,500股
纳斯达克系统总成交 2,297,524,750股
Ⅷ 美国股票年交易量怎么样
2017年美股日平均成交量为64.3亿股....而近期美国金融市场的三个现象引起全球市场的普遍关注,一是美元指数下90,二是美债收益率上2.8%,三是美股市场一度回调。美国金融市场“股债双杀”叠加美元指数的趋势性回落,对全金融市场产生了一定的负面影响并逐渐蔓延,市场风险偏好受到明显抑制。(财联社深度报道)
Ⅸ 美国股市有多少只股票 美国有多少只股票
美国有交易所三家共7679家股票总数股
1纽约证券交易所NYSE。有3459家股票股。
2美国证券交易所AMEX。有1061家股票股。
3纳斯达克证券市场Nasda。有3159家股票股。
Ⅹ 纳斯达克otc上市是什么意思与纳斯达克上市有什么区别
纳斯达克(NASDAQ),全称为美国全国证券交易商协会自动报价表(National Association of Securities Dealers Automated Quotations) ,是美国的一个电子证券交易机构,是由纳斯达克股票市场公司所拥有与操作的。