㈠ 神经网络预测安全系数
首先建立一种较简单的神经网络预测安全系数模型,以验证该方法用于露天井工联合开采煤岩边坡分析时的可行性。
6.4.3.1 露天井工联合开采边坡稳定性影响因素确定及其预处理
诸多因素影响下的边坡,具有复杂的变形破坏机理和模式。不同类型边坡涉及到的稳定性影响因素也是不同的,不能一概而论。但是对于某一区域或某一类型边坡而言,其涉及到的影响因素可以认为是类似的,可以认为它们的不稳定性活灾害强度和发展趋势是可类比的。本节神经网络样本取自海州露天矿的现场实测和分析数据,具有较强的相似性和可比性。
按工程地质研究方法,影响因素可分为内因和外因两大因素。内因主要有边坡岩体的地层、材料特性、地质构造、井工开采的煤层分布等;外因有边坡形态的改造、地下采空区范围、人为活动等。本节研究中的输入因素:内因取为容重、黏聚力、内摩擦角、采深采厚比、煤层倾角;外因取为边坡高、总边坡角、采空区面积。以极限平衡计算得到的边坡安全系数作为输出参数(参见6.2节分析)。
6.2节中的分析共选取了海州露天矿的12条剖面,选取W7、W3、E5、E7、E13、E19、E23、E25共8各剖面的计算实例作为学习样本,以W5、E1、E10、E174个剖面的计算实例作为预测样本,见表6-7。
表6-7 神经网络样本原始数据
将原始数据按式
6.4.3.2 BP神经网络学习
对样本数据进行归一化处理,得到神经网络的学习输入参数,见表6-8。
表6-8 神经网络学习样本参数
神经网络结构优化如下:
本模型中,k=8,n=8,m=1。
据式(6-17),取
据式(6-18),
据式(6-19),n1≥log2n=3。
可见,n1取值在4~13之间是适宜的,取不同隐层节点数进行网络训练,使系统总误差最小,可得n1=8时训练效果最理想。
样本训练误差E和循环次数t是程序运行时结束的两个结束标准,迭代中以程序结束标准为:E=0,t=10000。据网络结果优化确定:η=0.9,α=0.7,隐含层数c=1,隐层节点数n=8。
对神经网络进行训练,训练总误差E=9.913×10-4。
6.4.3.3 BP神经网络预测
据学习好的神经网络,进行4个样本的神经网络预测。
表6-9为预测样本输入参数。
表6-9 预测样本输入参数
将该表输入训练好的网络,得预测结果及误差见表6-10所示。
表6-10 神经网络预测结果与实测结果的对照
注:δ表示预测值与实测值的相对误差,
可见,安全系数的预测总平均误差均在20%以内,可以满足要求,从理论上说明了BP神经网络的可用性,可以预测输出目标。
㈡ PNN神经网络,BP神经网络,Elman神经网络,ANN神经网络,几种神经网络中哪个容错能力最强
多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点!
㈢ 求大神帮忙,用BP或elman神经网络实现风速预测程序怎么写
x=[6.2 ,5.8 ,5.5 , 5.6 ,5.4 ,5.1 ,5.2 , 5.2 ,5.1 ,4.9 ,4.8 ,5 ,5.2 ,5.3 ...
,5.2 ,5.1 ,5.1 ,5 ,4.8 , 4.9 ,5.3 ,5.4 ,5.3 ,5.3 ,5.5 ,5.2 ,4.6 ,4.9 ...
,4.9 ,5.4 ,5.4 ,5.5 ,5.4 ,5.1 ,5 ,5.1 ,5.2 ,4.9 ,5.2 ,5.1 ,5.1 ,4.8 ,...
3.8 ,3.4 ,3.8 ,3.9 ,3.8 ,3.7 ,3.6 ,2.9 ,3.1 ,3.7 ,3.9 ,3.7 ,3.7 ,3.8 ,...
3.6 ,3.7 ,2.7 ,2.8 ,1.9 ,2.7 ,2.9 ,2.8 ,3.5 ,3.6 ,3.7 ,3.3 ,3.6 ,3.5 ,...
4.3 ,4.4 ,3.9 ,4.5 ,4.2 ,4.9 ,4.5 ,4.6 4.8, 5.7, 5.6, 5.6, 5.6, 5.6, ...
5.6,5.6, 5.6, 5.6, 5.6, 5.6,5.6 ,5.6,5.6 ,5.6 ,5.6 ,5.6 ,5.6 ,5.6 ,5.6 ...
,5.6 ,5.6 ,5.6 ,5.6 ,5.5 ,5.5 ,5.2 ,3.6 ,5.6 ,4.5 ,6.1,6.2 ,5.6 ,6.4 ,...
5.5 ,4.8 ,5.1 ,6.1 ,5.5 ,4.6 ,4.3 ,6.7 ,5.9 ,4.8 ,5.8 ,5.7 ,5.7 ,5.4 ,...
5.9 ,5.7 ,6.2 ,5.2 ,4.6 ,4.1 ,4.3 ,4.3 ,4.1 ,3.9 ,3.8 ,4.3 ,4.6,4.2,...
4.1 ,4.5 ,4.3 ,3.7 ,3.1 ,2.7 ,2.9 ,2.4 ,3 ,2.8 ,2.8];
% 该脚本用来做NAR神经网络预测
% 作者:Macer程
lag=3; % 自回归阶数
iinput=x; % x为原始序列(行向量)
n=length(iinput);
%准备输入和输出数据
inputs=zeros(lag,n-lag);
for i=1:n-lag
inputs(:,i)=iinput(i:i+lag-1)';
end
targets=x(lag+1:end);
%创建网络
hiddenLayerSize = 10; %隐藏层神经元个数
net = fitnet(hiddenLayerSize);
% 避免过拟合,划分训练,测试和验证数据的比例
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
%训练网络
[net,tr] = train(net,inputs,targets);
%% 根据图表判断拟合好坏
yn=net(inputs);
errors=targets-yn;
figure, ploterrcorr(errors) %绘制误差的自相关情况(20lags)
figure, parcorr(errors) %绘制偏相关情况
%[h,pValue,stat,cValue]= lbqtest(errors) %Ljung-Box Q检验(20lags)
figure,plotresponse(con2seq(targets),con2seq(yn)) %看预测的趋势与原趋势
%figure, ploterrhist(errors) %误差直方图
%figure, plotperform(tr) %误差下降线
%% 下面预测往后预测几个时间段
fn=5; %比如预测步数为fn。
f_in=iinput(n-lag+1:end)';
f_out=zeros(1,fn); %预测输出
% 多步预测时,用下面的循环将网络输出重新输入
for i=1:fn
f_out(i)=net(f_in);
f_in=[f_in(2:end);f_out(i)];
end
% 画出预测图
figure,plot(1:n,iinput,'b',n:n+fn,[iinput(end),f_out],'r')
效果不是很好,但未来5个点风速应该是增大的。
㈣ Elman神经网络和回声状态网络哪个好
BP等前馈型神经网络是将动态时间建模问题变为静态空间建模问题,同时还需对模型结构进行定介,特别是随系统阶次的增加或阶次未知,迅速扩大的网络结构使网络学习的收敛速度减慢,并造成网络输入节点过多、训练困难及对外部噪声敏感等弊病。
Elman回归神经网络是在BP网络基本结构的基础上,通过存储内部状态使其具备映射的动态特征功能,从而使系统具有适应时变特性的能力。
㈤ 哪位大虾有神经网络的 Elman 训练及防真的例子
ytutyu6u外套哎utdau7r恶akira恶耳朵我GD
㈥ elman神经网络能够解决的问题,还有其他什么网络能够更好的解决
还可以使用GRNN神经网络,效果非常好,并且训练速度非常快。广义回归神经网络GRNN:径向基神经元和线性神经元可以建立广义回归神经网络,它是径RBF网络的一种变化形式,经常用于函数逼近。在某些方面比RBF网络更具优势。
在MATLAB中,直接使用net=newgrnn(P,T,spread)就能以非常快的速度设计出一个GRNN网络,其进行训练及预测时,效果非常好,不会比elman神经网络差。扩展常数SPREAD不能太小,才能使部分径向基神经元能够对输入向量所覆盖的区间产生相应,但也不能太大,否则计算困难。可以通过试凑来获得最佳扩展常数。
㈦ Elman神经网络学习问题
你是参考别人的代码修改的吧?报错信息的意思是:input_train、output_train这两个变量没有定义。你应该在之前对这两个变量进行赋值,即将训练数据的输入和输出做成矩阵形式,以一列为一个样本,再赋值给这两个变量。
训练Elman神经网络可以用train()或者adapt()。两个函数不同之处在于,train()函数应用反向传播训练函数进行权值修正,通常选用traingdx训练函数;adapt()函数应用学习规则函数进行权值修正,通常选用learngdm函数。
Elman神经网络的可靠性要比一些其他类型网络差一些,这是因为在训练和调整时,应用误差梯度的估计值。恰恰因为这一点,构建网络时,为了达到这一精度,Elman神经网络隐含层神经元的数目比其他网络结构相对较多。
㈧ 用BP或elman神经网络实现风速预测程序怎么写
神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。
㈨ 请问有谁对elman神经网络做过深入研究吗其中承接层的权值是如何安排和定位的呀
1、如果使用MATLAB的话不要自己设定,newff之后会自动赋值
也可以手动:net.IW=
2、一般来说输入归一化,那么w和b取0-1的随机数就行
㈩ 如何用matlab仿真elman神经网络
1:20; p1=sin(t); p2=sin(t)*2; plot(t,p1,'r'); hold on plot(t,p2,'b--'); hold on t1=ones(1,20);t2=ones(1,20)*2;%产生两组向量,分别为这两波形幅值,作为输出向量 p=[p1 p2 p1 p2]; t=[t1 t2 t1 t2]; Pseq=con2seq(p);%将矩阵形式的训练样本转换为序列的形式 Tseq=con2seq(t); R=1;%输入元素的数目为1 S2=1;%输出曾的神经元个数为1 S1=10;%中间层有10个神经元 net=newelm([-2,2],[S1,S2],{'tansig','purelin'}); net.trainParam.epochs=100;%设定次数 net=train(net,Pseq,Tseq); y=sim(net,Pseq); %预测 P=randn(12,2);T=randn(12,2); threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1]; a=[11 17 23]; for i=1:3 net=newelm(thresho...