当前位置:首页 » 股市行情 » 股利零增长的股票价格P
扩展阅读
008286股票型基金 2025-09-18 03:35:18
300677股票行情2020中报 2025-09-18 03:01:19

股利零增长的股票价格P

发布时间: 2021-12-24 22:53:48

1. 股利增长率与股票价格增长率是一致的,这样讲正确吗

这个是指市场均衡条件下——期望报酬率=必要报酬率——股票价格=股票实际价值(根据企业分派股利情况定的)

也就是说只有股价=评估价值 而且 市场利率一直不变 股价增长率才等于股利增长率。
但是现实是不可能的,如果拉长到几十年、上百年可能倾向这个结论吧。

2. 股票价值计算公式详细计算方法

计算公式为:

股票价值

(2)股利零增长的股票价格P扩展阅读:

确定股票内在价值一般有三种方法:

一、盈率法,市盈率法是股票市场中确定股票内在价值的最普通、最普遍的方法,通常情况下,股市中平均市盈率是由一年期的银行存款利率所确定的。

二、方法资产评估值法,就是把上市公司的全部资产进行评估一遍,扣除公司的全部负债,然后除以总股本,得出的每股股票价值。如果该股的市场价格小于这个价值,该股票价值被低估,如果该股的市场价格大于这个价值,该股票的价格被高估。

三、销售收入法,就是用上市公司的年销售收入除以上市公司的股票总市值,如果大于1,该股票价值被低估,如果小于1,该股票的价格被高估。

3. 若前三年股利是零增长,后一年变为正常增长

该股票的要求收益率=6%+2.5*(10%-6%)=16%
从第四年转为正增长,则第四年年底股利=1.5*(1+6%) =1.59元
第三年年底,股票价格=1.59/(16%-6%)=15.9元
第二年年底,股票价格=(15.9+1.5)/(1+16%)=15元
第一年年底,股票价格=(15+1.5)/(1+16%)=14.22414元
现在,股票价格=(14.22414+1.5)/(1+16%)=13.56元.

4. 股利固定增长的股票估价模型

可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。

第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。

第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。

5. 如何用股利增长率计算一年发多次股利的公司的未来股利

首先我不太清楚您计算年内多次分红的目的是仅仅为了估测未来分红本身还是希望以细分的分红数据来进行更精确的估值。如果目的是后者,我想在一些情况下(如无限增长股利模型),可以绕过股利计算直接进行估值。

回到您的问题,我个人认为您给出的计算方法可行,对于一年分发多次股利的股票估值,参考一年支付多次利息的债券,每一期的股利进行简单平均即可。注意,在估值时候的折现率也需要根据分发股息的频率做出相应处理。

6. 零成长股票(zero growth stock)的股价为什么不变

根据股利贴现模型,股票内在价值等于未来所有股利的折现值。该公司虽然利润增加,但分红不变,属于股利零增长,P=D/r,股票价格不变。

7. 某公司股票目前支付的股利为每股1元,投资者所要求的收益率为10%。股利零增长情况下股票的内在价值是( )

1/10%=10元

8. 某公司股票上,支付每股股利为1.92元,投资者要求的必要报酬率为9%若股利零增长,(1)则其永久持

  1. 根据永久年金公式P=D/R,故此股票理论价值=1.92/9%=21.33元

  2. 根据股利固定增长模型P=D0*(1+g)/(R-g),故此股票理论价值=1.92*(1+4%)/(9%-4%)=39.94元

  3. 依照解第一题的方法,该股票的预期收益率=1.92/26.5=7.25%,由于预期收益率达不到必要报酬率,故此此人购买股票并不是明智的。

9. 计算股票价值的公式

内在价值V=股利/(R-G)其中股利是当前股息;R为资本成本=8%,当然还有些书籍显示,R为合理的贴现率;G是股利增长率。本年价值为:2.5/(10%-5%),下一年为2.5*(1+10%)/(10%-5%)=55。大部分的收益都以股利形式支付给股东,股东在从股价上获得很大收益的情况下使用。根据本人理解应该属于高配息率的大笨象公司,而不是成长型公司。因为成长型公司要求公司不断成长,所以多数不配发股息或者极度少的股息,而是把钱再投入公司进行再投资,而不是以股息发送。
本条内容来源于:中国法律出版社《中华人民共和国金融法典:应用版》

10. 股票估价的股票估价的模型

股票估价的基本模型
计算公式为:
股票价值
估价
R——投资者要求的必要收益率
Dt——第t期的预计股利
n——预计股票的持有期数
零增长股票的估价模型
零成长股是指发行公司每年支付的每股股利额相等,也就是假设每年每股股利增长率为零。每股股利额表现为永续年金形式。零成长股估价模型为:
股票价值=D/Rs
例:某公司股票预计每年每股股利为1.8元,市场利率为10%,则该公司股票内在价值为:
股票价值=1.8/10%=18元
若购入价格为16元,因此在不考虑风险的前提下,投资该股票是可行的
二、不变增长模型
(1)一般形式。如果我们假设股利永远按不变的增长率增长,那 么就会建立不变增长模型。 [例]假如去年某公司支付每股股利为 1.80 元,预计在未来日子 里该公司股票的股利按每年 5%的速率增长。因此,预期下一年股利 为 1.80×(1 十 0.05)=1.89 元。假定必要收益率是 11%,该公司的 股票等于 1. 80×[(1 十 0. 05)/(0.11—0. 05)]=1. 89/(0. 11—0. 05) =31.50 元。而当今每股股票价格是 40 元,因此,股票被高估 8.50 元,建议当前持有该股票的投资者出售该股票。
(2)与零增长模型的关系。零增长模型实际上是不变增长模型的 一个特例。特别是,假定增长率合等于零,股利将永远按固定数量支 付,这时,不变增长模型就是零增长模型。 从这两种模型来看, 虽然不变增长的假设比零增长的假设有较小 的应用限制,但在许多情况下仍然被认为是不现实的。但是,不变增 长模型却是多元增长模型的基础,因此这种模型极为重要。
三、多元增长模型 多元增长模型是最普遍被用来确定普通股票内在价值的贴现现 金流模型。这一模型假设股利的变动在一段时间内并没有特定的 模式可以预测,在此段时间以后,股利按不变增长模型进行变动。因 此,股利流可以分为两个部分。 第一部分 包括在股利无规则变化时期的所有预期股利的现值 第二部分 包括从时点 T 来看的股利不变增长率变动时期的所有预期股利的现 值。因此,该种股票在时间点的价值(VT)可通过不变增长模型的方程 求出
[例]假定 A 公司上年支付的每股股利为 0.75 元,下一年预期支 付的每股票利为 2 元,因而再下一年预期支付的每股股利为 3 元,即 从 T=2 时, 预期在未来无限时期, 股利按每年 10%的速度增长, 即 0:,Dz(1 十 0.10)=3×1.1=3.3 元。假定该公司的必要收益 率为 15%,可按下面式子分别计算 V7—和认 t。该价格与目前每股 股票价格 55 元相比较,似乎股票的定价相当公平,即该股票没有被 错误定价。
(2)内部收益率。零增长模型和不变增长模型都有一个简单的关 于内部收益率的公式,而对于多元增长模型而言,不可能得到如此简 捷的表达式。虽然我们不能得到一个简捷的内部收益率的表达式,但 是仍可以运用试错方法,计算出多元增长模型的内部收益率。即在建 立方程之后,代入一个假定的伊后,如果方程右边的值大于 P,说明 假定的 P 太大;相反,如果代入一个选定的尽值,方程右边的值小于 认说明选定的 P 太小。继续试选尽,最终能程式等式成立的尽。 按照这种试错方法,我们可以得出 A 公司股票的内部收益率是 14.9%。把给定的必要收益 15%和该近似的内部收益率 14.9%相 比较,可知,该公司股票的定价相当公平。
(3)两元模型和三元模型。有时投资者会使用二元模型和三元模 型。二元模型假定在时间了以前存在一个公的不变增长速度,在时间 7、以后,假定有另一个不变增长速度城。三元模型假定在工时间前, 不变增长速度为身 I,在 71 和 72 时间之间,不变增长速度为期,在 72 时间以后,不变增长速度为期。设 VTl 表示 在最后一个增长速度开始后的所有股利的现值,认-表示这以前 所有股利的现值,可知这些模型实际上是多元增长模型的特例。
四、市盈率估价方法 市盈率,又称价格收益比率,它是每股价格与每股收益之间的比 率,其计算公式为反之,每股价格=市盈率×每股收益 如果我们能分别估计出股票的市盈率和每股收益, 那么我们就能 间接地由此公式估计出股票价格。这种评价股票价格的方法,就是 “市盈率估价方法”
五、贴现现金流模型 贴现现金流模型是运用收入的资本化定价方法来决定普通股票 的内在价值的。按照收入的资本化定价方法,任何资产的内在价值是 由拥有这种资产的投资 者在未来时期中所接受的现金流决定的。 由于现金流是未来时期的预 期值,因此必须按照一定的贴现率返还成现值,也就是说,一种资产 的内在价值等于预期现金流的贴现值。对于股票来说,这种预期的现 金流即在未来时期预期支付的股利,因此,贴现现金流模型的公式为 式中:Dt 为在时间 T 内与某一特定普通股相联系的预期的现金 流,即在未来时期以现金形式表示的每股股票的股利;K 为在一定风 险程度下现金流的合适的贴现率; V 为股票的内在价值。 在这个方程里,假定在所有时期内,贴现率都是一样的。由该方 程我们可以引出净现值这个概念。净现值等于内在价值与成本之差, 即 式中:P 为在 t=0 时购买股票的成本。 如果 NPV>0,意味着所有预期的现金流入的净现值之和大于投 资成本,即这种股票被低估价格,因此购买这种股票可行; 如果 NPV<0,意味着所有预期的现金流入的净现值之和小于投 资成本,即这种股票被高估价格,因此不可购买这种股票。 在了解了净现值之后,我们便可引出内部收益率这个概念。内部 收益率就是使投资净现值等于零的贴现率。如果用 K*代表内部收益 率,通过方程可得 由方程可以解出内部收益率 K*。把 K*与具有同等风险水平的股 票的必要收益率(用 K 表示)相比较:如果 K*>K,则可以购买这种股 票;如果 K*<K,则不要购买这种股票。 一股普通股票的内在价值时存在着一个麻烦问题, 即投资者必须 预测所有未来时期支付的股利。 由于普通股票没有一个固守的生命周 期,因此建议使用无限时期的股利流,这就需要加上一些假定。 这些假定始终围绕着胜利增长率,一般来说,在时点 T,每股股 利被看成是在时刻 T—1 时的每股股利乘上胜利增长率 GT,其计 例如,如果预期在 T=3 时每股股利是 4 美元,在 T=4 时每股股利 是 4.2 美元,那么不同类型的贴现现金流模型反映了不同的股利增 长率的假定