『壹』 对股票收盘价进行时间序列分析,预测其下一个交易日的收盘价,并与实际收盘价格进行对比
股票投资的分析这么复杂啊,先问问老师有依据这个买股票没,再回答。
『贰』 这是用股票收盘价形成的时间序列数据线性回归模型,求大神帮忙进行回归诊断!
还诊断啥 你看看那R-squared,这模型能用吗 然后回归系数也没有通过显著性检验
『叁』 时间序列数据比如GDP怎样消除价格因素的影响
用名义GDP除以价格指数(GDP消减指数),就可以得到实际GDP了。
『肆』 如何用R 语言 建立 股票价格的时间序列
在下想用R语言对股票价格进行时间序列分析。
问题出在第一步,如何将股票价格转换为时间序列。
我想用的语句是 pri <- ts (data, start=(), frequency= )
但是我不知道frequency 项该如何填?
因为股票的交易日是一周五天的。 那么这个frequency 该如何设置呢?
我知道通常frequency= 12 为月度数据,frequency= 4 为季度数据,frequency= 1 为年度数据 但日数据怎么写我就不知道了
初学R语言,还望各位大侠多多帮助。
『伍』 股票风险预测时,如何才能知道预测结果是否正确
随着机器学习和人工智能的兴起,预测:只需几行代码,就可以在初露头角的数据爱好者处轻松访问最新模型,且他们已经准备好随时攻克可能遇到的一切任务。
但是一知半解是危险的,虽然机器学习的大部分可以归因于统计和编程,但同样重要的是领域知识,但它往往被忽略。这一点在投资领域最为明显。
金融时间序列数据的信噪比一直都非常低,这种细微差别令人难以置信,从业人员花费了大量的精力来尝试实现难以捉摸的目标,但只有少数成功。因此,需要对数据进行更深入的了解,并且找出其成功的共通之处。
很多项目都是从选择一只股票开始的,这只股票通常是苹果(Apple)或亚马逊(Amazon)等科技公司的股票,原因很简单,这些公司众所周知,并在消费者的日常生活中根深蒂固。
这是有问题的,因为选股不是一个任意的过程,它是投资决策过程的一部分,本身需要一个模型。
以苹果为例,如果我们将其表现与更广泛的标准普尔500指数(SP 500)进行对比,我们会发现苹果的表现比该指数高出近60%。
乍一看,EWMA对标普500指数的预测非常准确,但如果我们仔细观察市场下滑的时期,就会发现情况并非看上去那样。
尽管蓝线和橙线似乎紧密相连,但EWMA策略仅能融合过去的信息,即它只包含了过去的信息,无法应对日内波动的信息,因此往往导致它预测上涨,但实际是下跌,反之亦然。在此期间采取这种策略,其表现将逊于标普500指数。
结论
在开始一个股票预测项目之前,特别是在你打算投入实际资金的项目之前,先对这个主题做一些研究并了解数据是有好处的。
如果结果好得令人难以置信。由于参与者的数量越来越多,而且参与者的水平也越来越高,市场在价格发现方面极其有效,尤其是在股票方面。
尽管这可能不会排除潜在机会的可能性,但这意味着需要比即时可用的算法和标准预处理技术更多的努力才能找到它。
『陆』 影响股票价格的直接原因
影响股票价格变动的因素很多,但基本上可分为以下三类:市场内部因素,基本面因素,政策因素。
(1)市场内部因素它主要是指市场的供给和需求,即资金面和筹码面的相对比例,如一定阶段的股市扩容节奏将成为该因素重要部分。
(2)基本面因素包括宏观经济因素和公司内部因素,宏观经济因素主要是能影响市场中股票价格的因素,包括经济增长,经济景气循环,利率,财政收支,货币供应量,物价,国际收支等,公司内部因素主要指公司的财务状况。
(3)政策因素是指足以影响股票价格变动的国内外重大活动以及政府的政策,措施,法令等重大事件,政府的社会经济发展计划,经济政策的变化,新颁布法令和管理条例等均会影响到股价的变动
『柒』 如何确定股指期货时间序列对股票指数时间序列影响的滞后性
应该要纠正你的观念,股指期货和期权,对应股票指数有的不是滞后性而是前瞻性。你要想股指期货是哪些资金在运作的就应该明白。好吧我直接说吧,在运作股指期货的基本都是大资金以及技术高手。多以基金和游资大鳄为主。他们的消息嗅觉是最灵敏的,往往股票市场一片平静,他们已经闻到了不一样的味道,然后在高杠杆的股指期货市场做出提前反应,从而获取暴利。目前国内的股指期货被限制开仓,参考意义已经没有之前的大了,你要看股指期货对A股指数的波动时间关系,建议你去看新加坡的A50期指,买卖的标的就是上证A股指数。国外和国内的大资金都在那里操作。
『捌』 股票中收益波动率是什么意思,怎么计算
股票波动率:波动率是指标的资产投资回报率的变化程度,有实际波动率和历史波动率之分。它是江恩理论的一个重要内容,在期货期权市场的指导意义较股票市场更大。
实际波动率
实际波动率又称作未来波动率,它是指对期权有效期内投资回报率波动程度的度量,由于投资回报率是一个随机过程,实际波动率永远是一个未知数。或者说,实际波动率是无法事先精确计算的,人们只能通过各种办法得到它的估计值。
历史波动率
历史波动率是指投资回报率在过去一段时间内所表现出的波动率,它由标的资产市场价格过去一段时间的历史数据(即St的时间序列资料)反映。这就是说,可以根据{St}的时间序列数据,计算出相应的波动率数据,然后运用统计推断方法估算回报率的标准差,从而得到历史波动率的估计值。显然,如果实际波动率是一个常数,它不随时间的推移而变化,则历史波动率就有可能是实际波动率的一个很好的近似。
波动率计算方法
1、上升趋势的波动率计算方法是:在上升趋势中,底部与底部的距离除以底部与底部的相隔时间,取整。上升波动率=(第二个底部-第一个底部)/两底部的时间距离。
2、下降趋势的波动率计算方法是:在下降趋势中,顶部与顶部的距离除以顶部与顶部的相隔时间,取整。并用它们作为坐标刻度在纸上绘制。下降波动率=(第二个顶部-第一个顶部)/两顶部的时间距离。
(8)股票价格时间序列的去噪扩展阅读:
股票收益率是反映股票收益水平的指标
1、是反映投资者以现行价格购买股票的预期收益水平。它是年现金股利与现行市价之比率。本期股利收益率=(年现金股利/本期股票价格)*100%。
2、股票投资者持有股票的时间有长有短,股票在持有期间获得的收益率为持有期收益率。持有期收益率=[(出售价格-购买价格)/持有年限+现金股利]/购买价格*100%。
3、公司进行拆股必然导致股份增加和股价下降,正是由于拆股后股票价格要进行调整,因而拆股后的持有期收益率也随之发生变化。
拆股后持有期收益率=(调整后的资本所得/持有期限+调整后的现金股利)/调整后的购买价格*100%。
『玖』 时间序列在股市有哪些应用
时间序列分析在股票市场中的应用
摘要
在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报,这极大促进了股票市场的繁荣。而在这种投资行为的背后,越来越多的投资者逐渐意识到股市预测的重要性。
所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。这种预测行为只是基于假定的因素为既定的前提条件为基础的。但是在股票市场中,行情的变化与国家的宏观经济发展、法律法规的制定、公司的运营、股民的信心等等都有关联,因此所谓的预测难于准确预计。
时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理管理方提供决策依据。
『拾』 含有噪声的时间序列如何去除噪声
根据噪声的特征,没有有固定的办法
一般情况是白噪声, 在带宽内分布均匀,只能通过低通或带通提高信噪比,就是AR或ARMA。
存在于频率一段处的噪声,而信号是宽带的,可以用带限滤波器。
如非平稳的, 要用短时傅里叶法或小波降噪、魏格纳变换等。