Ⅰ 什么是随机序列
我的理解,随机序列是“有顺序,有标号”的一系列随机数,随机过程是研究它们统计学特性的学科(特别是“时相关”特性,这个是随机变量研究里没有的)。随机序列一般不是有标号(离散的标号,例如x1,x2,...),就是有时间轴(连续的标号,比如s(t)其中t为时间),最重要的特点是“有顺序”!
和一般的随机变量不同(你每次的观测量只是一个数而已),对于随机序列,你每次的观测量,就最起码是一大长串随机数了。
举两个例子:
(1)某支股票的每日收盘价(只看收盘价!),这是个典型的离散时间轴随机序列,间隔为1天,股票价格受很多因素影响因而呈现随机性,但是统计上仍然有规律可循。
(2)电子仪器的噪声曲线,这是个典型的连续时间轴随机序列,你任何时候都能从仪器读到值,该值随机,但是这个值是有统计规律的,例如波动范围之类的参数。
随机过程的重要性,就是研究随机序列的一些统计学特性,特别是“时相关”特性。比如金融学里,人们就建立了大量的模型,去研究股票走势里的统计特性,甚至拿来进行股价预测,成功的预测模型可以帮助人们获得大笔利润。
例如,金融学里都会教的ARMA模型(你可以看下参考资料),就做了如下假设:今天的股票收盘价,会受到前面几天股票收益的影响(线性关系),在加上一个白噪声函数。这就是随机序列的“时相关”重要特性的体现。这只是个简单的例子。
随机过程,在工程学,金融学,经济学等学科里,都有很重要的地位,努力学好它吧。
Ⅱ 求助,美式期权二叉树定价方法如何求Vega和rho
二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。构建二项式期权定价模型编辑1973年,布莱克和舒尔斯(BlackandScholes)提出了Black-Scholes期权定价模型,对标的资产的价格服从对数正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(JohnCox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。1979年,罗斯、考科斯和马克·鲁宾斯坦(MarkRubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简化的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。虽然这一假设非常简单,但由于可以把一个给定的时间段细分为更小的时间单位,因而二项式期权定价模型适用于处理更为复杂的期权。随着要考虑的价格变动数目的增加,二项式期权定价模型的分布函数就越来越趋向于正态分布,二项式期权定价模型和布莱克-休尔斯期权定价模型相一致。二项式期权定价模型的优点,是简化了期权定价的计算并增加了直观性,因此现在已成为全世界各大证券交易所的主要定价标准之一。一般来说,二项期权定价模型的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。二叉树思想编辑1:Black-Scholes方程模型优缺点:优点:对欧式期权,有精确的定价公式;缺点:对美式期权,无精确的定价公式,不可能求出解的表达式,而且数学推导和求解过程在金融界较难接受和掌握。2:思想:假定到期且只有两种可能,而且涨跌幅均为10%的假设都很粗略。修改为:在T分为狠多小的时间间隔Δt,而在每一个Δt,股票价格变化由S到Su或Sd。如果价格上扬概率为p,那么下跌的概率为1-p。3:u,p,d的确定:由Black-Scholes方程告诉我们:可以假定市场为风险中性。即股票预期收益率μ等于无风险利率r,故有:SerΔt=pSu+(1−p)Sd(23)即:e^{r\Deltat}=pu+(1-p)d=E(S)(24)又因股票价格变化符合布朗运动,从而δSN(rSΔt,σS√Δt)(25)=>D(S)=σ2S2δt;利用D(S)=E(S2)−(E(S))2E(S2)=p(Su)2+(1−p)(Sd)2=>σ2S2Δt=p(Su)2+(1−p)(Sd)2−[pSu+(1−p)Sd]2=>σ2Δt=p(u)2+(1−p)(d)2−[pu+(1−p)d]2(26)又因为股价的上扬和下跌应满足:ud=1(27)由(24),(26),(27)可解得:其中:a=erδt。4:结论:在相等的充分小的Δt时段内,无论开始时股票价格如何。由(28)~(31)所确定的u,d和p都是常数。(即只与Δt,σ,r有关,而与S无关)。
Ⅲ 关于Black-Scholes模型
我建议你看看公司价值定价方法,里面有一个实物期权定价法,你看看。
我在这里也就不给你贴了,没意思
Ⅳ 单位根检验的单位根检验研究
在离散时间序列模型中,如自回归移动平均(AR-MA)过程,模型的自回归部分的‘单位根’表明序列是不平稳的,即随时间的推进,它并没有回到给定值的趋势(长期均值)。模型的移动平均部分的单位根表明当进一步考察过去时间状态的序列时,此序列不能用一个受到对序列偏差当前估计的观测影响的自回归表示,即序列是不可逆的。 平稳和可逆的ARMA模型,不含单位根,总能被表示成无限阶自回归或移动平均模型。距离系数滞后于序列本身yt,或修正序列εt,随时间推移变小。博克斯(Box)和詹金斯(Jenkins)(1976年)提供了很全面的有关ARMA模型的介绍。 ARMA(p, q)模型: y-φ1 y-1-…-φpy-p= εt-θ1εt-1-…-θqεq,或利用滞后算子符号(LkXt≡Xt-k)可表示成φp(L)yt =θq(L)εt。最简单的情况,自回归模型(AR(1))当|φ1=1时,有一单位根(|φ1|<1时模型是平稳的),移动平均模型(MA(1))当|θ1 |=1时,有一单位根(θ1<1时模型是可逆的)。 纳尔逊(Nelson)和普洛索(Plosser) (1982年)以及后来许多学者都表明ARMA模型的自回归部分出现的单位根在动态经济模型中有重要的结果。比如,有一个单位根的ARMA模型中经济变量倾向于回复到没有确定性的长期增长路径上,同时,当进一步预测将来的情形时,经济序列的水平的不确定性变得更大。因此,对于一个综合序列(包含一单位根),讨论其‘长期’均值或方差是无意义的。根据商业循环模型,单位根意味着至少序列的部分修正导致了序列水平的永久变化。 ARMA模型中自回归部分的单位根检验问题是复杂的。迪基(Dickey)和富勒(Fuller) (1979年)给出了回归的单位根“t-统计量”τ=(φ1-1)/s(φ1)的分布,它不是学生-t分布。他们阐述了在一般的AR(p)模型中怎样应用这个检验。根据迪基-富勒检验,纳尔逊和普罗夏(1982年)称许多美国年度宏观经济时间序列似乎有单位根。他们说,这使人们对假设经济数据是平稳随机变量,可能在一个确定性的增长路径附近发生偏差的动态经济模型的有用性感到怀疑。 在股票价格研究中,单位根检验在进行经济分析时有重要的作用。有关股票价格(取对数)的随机游动模型是带有单位根的AR(1)模型。许多关于股票市场效率的争论都以罗伯特·希勒(Robert Shiller)提出的统计方法为中心。特别是,他的“美国总的股票价格和股息是沿着指数趋势线变化的随机变量”这一假定已表明对他的“在给定未来股息状态下,股票价格变化‘太大’”这一结论有重要的影响(参见克莱顿(Klei-don),1986年;马什(Marsh)和默顿(Merton), 1986年)。 在迪基-富勒(1979年)之后,一些学者提出了对自回归单位根的其他检验方法,这些方法对一般的ARMA(p, q)过程是适用的。包括赛义德(Said)和迪基(1984年、1985年)、菲利普斯(Phillips, 1987年)及菲利普斯和珀森(Person) (1988年)等提出的方法。这些方法十分吸引人,因为它们不要求研究者对ARMA过程产生的数据作很强的假设,不付出一定的代价这个好处是不会有的。 施韦尔特(Schwert, 1987年、1989年)用蒙特卡洛(Monte Carlo)试验表明当数据产生过程不是简单的AR过程时,这些单位根检验方法对有限大样本效果较差。特别地,施韦尔特用许多美国二次大战后月度或季度的宏观经济时间序列所符合的ARMA(1, 1)过程表明单位根检验的样本容量经常比渐近分布理论所表达的要大。例如,在有1000个观察值的样本下,一个名义上为5%的水平的检验可能错误地拒绝一个96%可能性有单位根的假设。 并且,用检验的功效去区别单位根和自回归根的问题在于它们很接近,除非其中一个特别小,换句话说,研究者相信数据生成过程是平稳的,但又含有很强的自回归循环;研究者如认为过程不平稳,但用统计检验的方法区别其不同未必靠得住。 移动平均过程中的单位根检验问题同样是复杂的。普洛索和施韦尔特(1977年)表明当序列不能消除一个确定的时间倾向时,在MA过程中就会产生单位根。区别单位根和移动平均根很接近的统计问题类似于上面讨论的AR过程。 最令人惊讶的是美国月度消费者物价指数通货膨胀率,实际利率和易变的股票收益等序列可能含有单位根。相关内容可参见纳尔逊和施韦尔特,1977年;弗伦斯(Frence)、施韦尔特和斯坦博(Stambaugh), 1987年;帕甘(Pagan)和施韦尔特,1990年;以及施韦尔特1987年。因为这些序列都是通过百分比增长率来表示的,因此怀疑不平稳的原因就消失了。 像年度资本国民生产总值这样的序列,是许多有关单位根的实用的宏观经济学文献的焦点,这些可能导致单位根产生的不平稳的来源是容易想象的。比如,技术的进步即经过若干时间积累起来的随机创造会导致随机游动行为。这样就容易理解名义价格水平可能包含单位根的许多原因。另一方面,通货膨胀率含有一个单位根就意味着(取对数)价格水平含有两个单位根,和那种行为一致的解释的集合是明显地较小。 即使怀疑一特定的经济序列含有单位根,不平稳的来源也是值得考虑的。比如,在消费者物价指数中不稳定的工艺变化可能引起单位根。但原因仅仅是因为劳动统计局在(产品)质量的改变上没有予以准确的调整。 在考察经济时间序列时,对于改变人口统计特征和计量实践的程度导致的不平稳,许多经济学家能恰当地忽视这些因素,因为它对经济理论影响甚微。另一方面,假如不平稳的结果来自因为技术或偏好的综和过程,在用数据标定他们错误指定的理论化结构时,对(长期)增长模型或(短期)商业循环模型感兴趣的经济学家可能犯严重的错误。只有认真地分析这些数据,包括用于产生数据的计量知识,才可能解决这些问题。 用来检验单位根的统计方法存在的弱点必然要求一些非标准的方法。事实上,许多经济时间序列显示了其持续性。关于单位根的争论看来还要持续很长时间。撇开其他的不谈,这些统计学的、经验的文献使许多理论学者把注意力集中在系列动态模型上,而这些模型可以帮助理解长期行为。
Ⅳ 随机过程在金融领域应用的有关题目,请教高人指点~~~
解答:本题我们可以直接利用独立同分布的对数正态随机变量的定义来解答。
1)假设Z是标准正态随机变量,则第一周股票价格上升的概率是
P(S(1)/S(0) >1)=P{ln[S(1)/S(0) ]>0}=P{Z>-0.0165/0.0730}=P{Z>-0.226}=P{Z<0.226}查表约等于0.5894. 于是连续两周价格上升的概率为(0.5894)²=0.3474.
2)两周后的股票价格高于今天的价格概率为P{S(2)/S(0) >1}=P{[S(2)/S(1)][S(1)/S(0)>1}
=P{ln[S(2)/S(1)]+ln[S(1)/S(0)>1}>0
=P{Z>-0.0330/0.0730√2}=P{Z>-0.31965}=P{Z<0.31965}查表约等于0.6354.
Ⅵ 股票离散度公式
是一组数据的标准差与其相应的平均数之比。
先计算平均数,再计算标准差,最终得到离散度。
为什么要有离散系数呢?是为了不同样本的波动性可比较。因为如果样本的平均值是相同的,那么我们比较方差或者标准差就能知道数据的稳定性。如果数据的平均值不同,无法通过上述比较得出结果,就需要应用离散系数。离散系数最通常的应用,对于股票的风险测量,股票的风险系数就是离散系数。
Ⅶ 假定股票价格s服从集合布朗运动 ds=μsdt σdz 变量sn服从什么过程
一般双次拉回都上不去,一定有再次下跌,这种双次拉回的第二次,都是构成下跌中的第一个中枢的最小级别的第三类卖点。看技术买点,一定要综合地看,如果30分很强的,甚至是1分钟的买点也该回补了;但如果30分很弱,那至少要等30分的买点出现。+ƍƍ 8819-7996应该对你了解股票知识有帮助。
Ⅷ 如何证明股票价格 平稳随机过程
日K线代表了股价的随机变量,由于每日的开盘价和收盘价的数值是不连续的,所以日K线所表示的股价是一个离散的随机变量。在T1到T2这段时间里产生的一族日K线离散随机变量和它们在股价—时间二维坐标上形成的走势或者轨迹,这就是离散随机变量的随机过程。yuuu1233
Ⅸ 股市中ST SZ SN代表什么
st,亏损股票,sz深圳股票,sn上海股票