当前位置:首页 » 金融股票 » 用于股票基金的python库
扩展阅读
哪个证券带着做股票 2025-07-11 18:12:00
闸口 2025-07-11 17:35:26

用于股票基金的python库

发布时间: 2021-06-12 12:12:07

㈠ 怎样用 Python 写一个股票自动交易的程序

概率炒股法:
下面方法买涨不买跌,同时避免被套,缺点,手续费比较高,但完全可以吃完整个牛市,熊市不会被套。
用python获取股票价格,如tushare,如果发现股票当天涨幅在大盘之上(2点30到2点50判断),买入持有一天,下跌当天就别买,你可以用概率论方法,根据资金同时持有5支,10支或20支,这样不怕停盘影响,理论上可以跑赢大盘。好处:避免人为冲动,缺点手续费高
还有一种是操作etf,如大盘50etf,etf300,中小板etf,创业板etf,当天2.30分判断那个etf上涨就买入那支,买入涨幅最大的,不上涨什么都不买,持有一天,第二天上午判断一下,如果下跌超过2%卖掉。好处:不会踩地雷,缺点:涨随大盘,我比较推荐这个方法,外围的风险比较小。
具体的python程序我有,比上面复杂,有止赢止损位,资金管理,监视管理,我用在实盘当中,自动化下单也已解决。
我觉得程序的成败不在一日之功,在于长期稳定赚钱,如运行十年,过多的数据分析也无意义,因为预测未来永远是一个概率问题,不是百分之百确定的,如果你的程序能在长时间多次数上战胜市场,你的程序就能趋向大数定理。
否则一时的回撤会让你停止程序自动执行,而无法趋向大数定理中的稳定概率。
如果有一个程序能百分之99确定,那么基本上肯定是分析了内幕交易数据,和徐x一样,每次重仓一支股,这种手法应该是得到了内幕,也就不需要什么程序来交易了。
巴菲特的交易模式实质上也是内幕交易的一种,因为他靠的是外在分析,实地考查,估计这是寻找内幕的手段,现在做大了,这种效果就不灵了,收益也下降了,美国经济也下滑了,所以巴菲特的未来是必定是暗淡的,因为内幕交易的池子有限,资金量大了不好操作。
想想如果巴菲特生在苏联,印度,日本等等其他国家,他可能在街头要饭,美国二战后经济环境加倾向内幕造就了他,而不是炒股技术有多神。所以巴菲特不屑于程序化交易。
巴菲特及不少美国式的股神实际上是幸存者偏差造成的,你想想苏联的股神在那里?为什么一个都没有?(“沉默的数据”、“死人不会说话”)
我觉得未来真正能成股神必定是程序,不是人,因为一个好的程序策略可以用一辈子,实现长期稳定增长,当然前提是社会经济环境稳定,不会出现类似苏联的动乱,也不会出现日本式的恶性通胀(对货币m2有点担心)。

太多的股票让股民每天沉浸在选股的游戏中,选股造就了券商的行情软件,实际上很多数据都是没有用的,所有的关键是按操作方法永远执行下去才能趋向稳定概率,否则今天换一种明天换一种方法,今天按kdj,明天按macd,后天按boll,大后天按ddx,大大后天按自编指标,多条件选股,最后钱都交手续费或止损不及时被套牢了。这时券商收佣金的目的也就达到了,每年券商收的佣金比股市分红要高。不管行情如何,只要多请几个股评员,总有方向说对的,玩个概率游戏让大家频繁交易,券商的收入只会增不会降。所以千万别信股评,玩的是概率游戏,如同预测硬币的正反,请十个股评师必定有个能预测三次正确的神股评。你信这个神股评,后面可能是三次都不准,呵呵。所以券商和行情软件总会在收盘或午休时弹出各种消息或评价,说实在的这种东西没有一分钱的价值。可能早就写好了上涨的说法是模块a,下跌的说法是模板b,平市的说法是模板c,只是填上当天数据即可,都是八股文,都是马后炮,一样的事件上午说成是上涨理由,下午说成是下跌理由。
程序的策略经过测试后的关键在于稳定执行,长期稳定执行,长期长期稳定稳定执行执行,重要的事说三遍。

人性无法战胜的弱点是执行力,小学生都懂的天天向上,每日进步,世间有几人能做到?而稳定几十年执行更是难上加难,如同背英语单词一样,理论上一天背一百个,一百天就可以一万词,但十年,二十年过去了,你可能还是三千词以下。

用程序的目的就是百分之百执行到位,没有折扣,真正战胜人性的弱点,和t+1没有关系。

另外通过一定方法降低手续费也可以使你的资金活得更久,如把上面的日模型改为周或月模型。

㈡ 如何使用python抓取炒股软件中资金数据

这个说来有点复杂,用fiddle监控软件跟服务器间的通讯,找到数据源地址,然后用excel或python抓这个源地址数据,可能还要加上反扒代码,构造时间戳等等,你网上找python网抓视频教程看看就知道了。

㈢ python股票行情用什么数据库

内置sqlite库,其他数据库需要自己安装,常用的都支持 mysql

㈣ 怎样用 Python 写一个股票自动交易的程序

  • 方法一

    前期的数据抓取和分析可能python都写好了,所以差这交易指令接口最后一步。对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。

  • 方法二

    是wind这样的软件也有直接的接口,支持部分券商,但也贵,几万一年是要的。


  • 方法三

    鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。

  • 方法四

    就是找到这些软件的关于交易指令的底层代码并更改,不过T+1的规则下,预测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧

㈤ 用Python 进行股票分析 有什么好的入门书籍或者课程吗

个人觉得这问题问的不太对,说句不好的话,你是来搞编程的还是做股票的。


当然,如果题主只是用来搜集资料,看数据的话那还是可以操作一波的,至于python要怎么入门,个人下面会推荐一些入门级的书籍,通过这些书籍,相信楼主今后会有一个清晰的了解(我们以一个完全不会编程的的新手来看待)。

《Learn Python The Hard Way》,也就是我们所说的笨办法学python,这绝对是新手入门的第一选择,里面话题简练,是一本以练习为导向的教材。有浅入深,而且易懂。

其它的像什么,《Python源码剖析》,《集体智慧编程》,《Python核心编程(第二版)》等题主都可以适当的选择参读下,相信都会对题主有所帮助。

最后,还是要重复上面的话题,炒股不是工程学科,它有太多的变数,对于现在的智能编程来说,它还没有办法及时的反映那些变数,所以,只能当做一种参考,千万不可过渡依赖。


结语:pyhton相对来说是一种比较高端的学科,需要有很强的逻辑能力。所以入门是非常困难的,如果真的要学习,是需要很大的毅力去坚持下去的,而且不短时间就能入门了,要有所心理准备。

㈥ python量化哪个平台可以回测模拟实盘还不要钱

Python量化投资框架:回测+模拟+实盘
Python量化投资 模拟交易 平台 1. 股票量化投资框架体系 1.1 回测 实盘交易前,必须对量化交易策略进行回测和模拟,以确定策略是否有效,并进行改进和优化。作为一般人而言,你能想到的,一般都有人做过了。回测框架也如此。当前小白看到的主要有如下五个回测框架: Zipline :事件驱动框架,国外很流行。缺陷是不适合国内市场。 PyAlgoTrade : 事件驱动框架,最新更新日期为16年8月17号。支持国内市场,应用python 2.7开发,最大的bug在于不支持3.5的版本,以及不支持强大的pandas。 pybacktest :以处理向量数据的方式进行回测,最新更新日期为2个月前,更新不稳定。 TradingWithPython:基于pybacktest,进行重构。参考资料较少。 ultra-finance:在github的项目两年前就停止更新了,最新的项目在谷歌平台,无奈打不开网址,感兴趣的话,请自行查看吧。 RQAlpha:事件驱动框架,适合A股市场,自带日线数据。是米筐的回测开源框架,相对而言,个人更喜欢这个平台。 2 模拟 模拟交易,同样是实盘交易前的重要一步。以防止类似于当前某券商的事件,半小时之内亏损上亿,对整个股市都产生了恶劣影响。模拟交易,重点考虑的是程序的交易逻辑是否可靠无误,数据传输的各种情况是否都考虑到。 当下,个人看到的,喜欢用的开源平台是雪球模拟交易,其次是wind提供的模拟交易接口。像优矿、米筐和聚宽提供的,由于只能在线上平台测试,不甚自由,并无太多感觉。 雪球模拟交易:在后续实盘交易模块,再进行重点介绍,主要应用的是一个开源的easytrader系列。 Wind模拟交易:若没有机构版的话,可以考虑应用学生免费版。具体模拟交易接口可参看如下链接:http://www.dajiangzhang.com/document 3 实盘 实盘,无疑是我们的终极目标。股票程序化交易,已经被限制。但对于万能的我们而言,总有解决的办法。当下最多的是破解券商网页版的交易接口,或者说应用爬虫爬去操作。对我而言,比较倾向于食灯鬼的easytrader系列的开源平台。对于机构用户而言,由于资金量较大,出于安全性和可靠性的考虑,并不建议应用。 easytrader系列当前主要有三个组成部分: easytrader:提供券商华泰/佣金宝/银河/广发/雪球的基金、股票自动程序化交易,量化交易组件 easyquotation : 实时获取新浪 / Leverfun 的免费股票以及 level2 十档行情 / 集思路的分级基金行情 easyhistory : 用于获取维护股票的历史数据 easyquant : 股票量化框架,支持行情获取以及交易 2. 期货量化投资框架体系 一直待在私募或者券商,做的是股票相关的内容,对期货这块不甚熟悉。就根据自己所了解的,简单总结一下。 2.1 回测 回测,貌似并没有非常流行的开源框架。可能的原因有二:期货相对股票而言,门槛较高,更多是机构交易,开源较少; 去年至今对期货监管控制比较严,至今未放开,只能做些CTA的策略,另许多人兴致泱泱吧。 就个人理解而言,可能wind的是一个相对合适的选择。 2.2 模拟 + 实盘 vn.py是国内最为流行的一个开源平台。起源于国内私募的自主交易系统,2015年初启动时只是单纯的交易API接口的Python封装。随着业内关注度的上升和社区不断的贡献,目前已经一步步成长为一套全面的交易程序开发框架。如官网所说,该框架侧重的是交易模块,回测模块并未支持。 能力有限,如果对相关框架感兴趣的话,就详看相关的链接吧。个人期望的是以RQAlpha为主搭建回测框架,以雪球或wind为主搭建模拟框架,用easy系列进行交易。

㈦ 如何用Python和机器学习炒股赚钱

相信很多人都想过让人工智能来帮你赚钱,但到底该如何做呢?瑞士日内瓦的一位金融数据顾问 Gaëtan Rickter 近日发表文章介绍了他利用 Python 和机器学习来帮助炒股的经验,其最终成果的收益率跑赢了长期处于牛市的标准普尔 500 指数。虽然这篇文章并没有将他的方法完全彻底公开,但已公开的内容或许能给我们带来如何用人工智能炒股的启迪。

我终于跑赢了标准普尔 500 指数 10 个百分点!听起来可能不是很多,但是当我们处理的是大量流动性很高的资本时,对冲基金的利润就相当可观。更激进的做法还能得到更高的回报。

这一切都始于我阅读了 Gur Huberman 的一篇题为《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的论文。该研究描述了一件发生在 1998 年的涉及到一家上市公司 EntreMed(当时股票代码是 ENMD)的事件:

「星期天《纽约时报》上发表的一篇关于癌症治疗新药开发潜力的文章导致 EntreMed 的股价从周五收盘时的 12.063 飙升至 85,在周一收盘时接近 52。在接下来的三周,它的收盘价都在 30 以上。这股投资热情也让其它生物科技股得到了溢价。但是,这个癌症研究方面的可能突破在至少五个月前就已经被 Nature 期刊和各种流行的报纸报道过了,其中甚至包括《泰晤士报》!因此,仅仅是热情的公众关注就能引发股价的持续上涨,即便实际上并没有出现真正的新信息。」

在研究者给出的许多有见地的观察中,其中有一个总结很突出:

「(股价)运动可能会集中于有一些共同之处的股票上,但这些共同之处不一定要是经济基础。」

我就想,能不能基于通常所用的指标之外的其它指标来划分股票。我开始在数据库里面挖掘,几周之后我发现了一个,其包含了一个分数,描述了股票和元素周期表中的元素之间的「已知和隐藏关系」的强度。

我有计算基因组学的背景,这让我想起了基因和它们的细胞信号网络之间的关系是如何地不为人所知。但是,当我们分析数据时,我们又会开始看到我们之前可能无法预测的新关系和相关性。

如果你使用机器学习,就可能在具有已知和隐藏关系的上市公司的寄生、共生和共情关系之上抢占先机,这是很有趣而且可以盈利的。最后,一个人的盈利能力似乎完全关乎他在生成这些类别的数据时想出特征标签(即概念(concept))的强大组合的能力。

我在这类模型上的下一次迭代应该会包含一个用于自动生成特征组合或独特列表的单独算法。也许会基于近乎实时的事件,这可能会影响那些具有只有配备了无监督学习算法的人类才能预测的隐藏关系的股票组。

㈧ 第1章 为什么将Python用于金融

Python在金融中的应用
在过去的十年里,随着自动化技术的出现,科技最终成为杰出的金融机构,银行,保险和投资公司,股票交易公司,对冲基金,券商等公司的一部分。根据2013年的Crosman 报告,与2013年相比,银行和金融公司2014年在科技上的花费要高出4.2%。预计在2020年,一年的金融服务的技术成本将达到5亿美元。正值系统需要维护和不断升级的时候,一些著名的银行雇佣一些开发者是很正常的事情。那么Python用在哪里呢?
Python的语法很容易实现那些金融算法和数学计算,每个数学语句都能转变成一行Python代码,每行允许超过十万的计算量。
没有其他语言能像Python这样适用于数学,Python精通于计算,以及数学和科学中的排列组合问题。Python的第二个特性是表示数字,序列和算法。比如SciPy库,很适合用来做技术领域和科学领域的计算,SicPy库被很多工程师,科学家和分析人员使用。NumPy,也是Python的一个扩展,它可以很好地处理数学函数,数组和矩阵。同时,Python也支持严格的编码模式,因此,使它成为一个平衡的选择,或者说方法。
使用更少的人达到相同的结果以及实现其他编程语言不能实现的事,是Python首要的优点。Python语法的精确和简洁,以及它大量宝贵的第三方工具使它成为处理金融行业的错综复杂的事务的唯一可靠的选择。
Cititec(英格兰伦敦的职业介绍所)的技术招聘经理Stephen Grant说:跨市场风险管理和交易系统都在使用Python(有时会混合使用c++),很多银行从建立银行的前端到资产风险系统都会选择使用Python。使用Python的金融公司包括荷兰银行,德国证券交易所集团,Bellco信用社,摩根大通以及阿尔蒂斯投资管理。

㈨ python用什么方法或者库可以拿到全部股票代码

首先你需要知道哪个网站上有所有股票代码,然后分析这个网站股票代码的存放方式,再利用python写一个爬虫去爬取所有的股票代码