❶ 矩形是什么
有一个角是直角的平行四边形是矩形。矩形(rectangle),又叫做长方形,是一种特殊的平行四边形。
❷ 什么是矩形
有一个角是直角的平行四边形叫做矩形。矩形包括长方形与正方形。
❸ 矩形是什么
一个角为90度的平行四边形
❹ 矩形是什么样的
矩形如下图:
矩形:至少有三个内角都是直角的四边形是矩形,有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。矩形是一种特殊的平行四边形,正方形是特殊的矩形。矩形包括长方形和正方形。
由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形又可分为长方形和正方形,故包含长方形和正方形的一些共有的性质。矩形的性质大致总结如下:
(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;
(2)矩形的四个角都是直角;
(3)矩形的对角线相等;
(4)长方形有2条对称轴,正方形有4条;
(5)具有不稳定性(易变形)。
(4)矩形是什么扩展阅读
矩形的常见判定方法如下:
(1)有一个角是直角的平行四边形是矩形。
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的四边形是矩形。
(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。
(5)对角线相等且互相平分的四边形是矩形。
❺ 什么是矩形
定义
有一个角是直角的平行四边形叫做矩形。也就是长方形。
性质
1.矩形的四个角都是直角
2.矩形的对角线相等
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线)。
5.对边平行且相等
6.对角线互相平分
7.平行四边形的性质都具有。
判定
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
4.四个内角都相等的四边形为矩形
5.关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形
6.对于平行四边形,若存在一点到两双对顶点的距离的平方和相等,则此平行四边形为矩形
7.对角线互相平分且相等的四边形是矩形
8.对角线互相平分且有一个内角是直角的四边形是矩形
矩形面积
S=ah(注:a为边长,h为该边上的高)
S=ab(注:a为长,b为宽)
❻ 矩形是什么
矩形就是长方形
❼ 矩形是什么样
如图:
矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的两组对边分别相等,而且在平面内任一点到其两对角线端点的距离的平方和相等。
有一个角是直角的平行四边形叫做矩形。矩形包括长方形与正方形。
矩形是一类特殊的平行四边形。
判定:
1.一个角是直角的平行四边形是矩形。
2.对角线相等的平行四边形是矩形。
3.三个内角都是直角的四边形是矩形。
说明:矩形和正方形都是平行四边形。平行四边形的定义在矩形上仍然适用。
相关公式:
面积:S=ab(注:a为长,b为宽)
周长:C=2(a+b)=(注:a为长,b为宽)
外接圆:
矩形外接圆半径R=矩形对角线的一半
性质:
(1)矩形的定义:有一个角是直角的平行四边形是矩形.
(2)矩形的性质
①平行四边形的性质矩形都具有;
②角:矩形的四个角都是直角;
③边:邻边垂直;
④对角线:矩形的对角线相等;
⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.