当前位置:首页 » 股票资讯 » 斐波那契数列通项公式
扩展阅读
股票卖出按哪天价格 2025-08-24 07:04:57
怎样看股票买卖价格 2025-08-24 06:55:55

斐波那契数列通项公式

发布时间: 2021-09-22 03:44:35

『壹』 斐波那契数列通项公式

斐波那契数列通项公式
F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,
X2=(1-√5)/2.
则F(n)=C1*X1^n
+
C2*X2^n
∵F(1)=F(2)=1
∴C1*X1
+
C2*X2
C1*X1^2
+
C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1,
-rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*F(n-2)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+
r^3*F(n-3)
……
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)*F(1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n
-
r^n)/(s-r)
r+s=1,
-rs=1的一解为
s=(1+√5)/2,
r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}

『贰』 斐波那契Fibonacci数列的通项公式

斐波那契数列的通项公式

『叁』 斐波那契数列通项公式证明方法

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

通项公式的推导方法二:普通方法

设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1

n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)

那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

『肆』 斐波那契数列的通项公式是什么,及推导过程

方法二:待定系数法构造等比数列1(初等代数解法)
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
则r+s=1, -rs=1。
n≥3时,有。
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。
……
F⑶-r*F⑵=s*[F⑵-r*F⑴]。
联立以上n-2个式子,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。
∵s=1-r,F⑴=F⑵=1。
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)。
那么:
F(n)=s^(n-1)+r*F(n-1)。
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。
=(s^n - r^n)/(s-r)。
r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。
则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法三:待定系数法构造等比数列2(初等代数解法)
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。
解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。
得α+β=1。
αβ=-1。
构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。
所以。
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。
由式1,式2,可得。
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法四:母函数法。
对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)
令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。
那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x
.因此S(x)=x/(1-x-x^2).
不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].
因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.
再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……
于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……
其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.
因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

『伍』 斐波那契数列通项公式代表什么

斐波那契数列通项公式推导方法
Fn+1=Fn+Fn-1
两边加kFn
Fn+1+kFn=(k+1)Fn+Fn-1
当k!=1时
Fn+1+kFn=(k+1)(Fn+1/(k+1)Fn-1)

Yn=Fn+1+kFn

当k=1/k+1,且F1=F2=1时
因为
Fn+1+kFn=1/k(Fn+kFn-1)
=>
Yn=1/kYn-1
所以
Yn为q=1/k=1(1/k+1)=k+1的等比数列
那么当F1=F2=1时
Y1=F2+kF1=1+k*1=k+1=q
根据等比数列的通项公式
Yn=Y1q^(n-1)=q^n=(k+1)^n
因为k=1/k+1=>k^2+k-1=0
解为
k1=(-1+sqrt(5))/2
k2=(-1-sqrt(5))/2
将k1,k2代入
Yn=(k+1)^n
,和Yn=Fn+1+kFn
得到
Fn+1+(-1+sqrt(5))/2Fn=((1+sqrt(5))/2)^2
Fn+1+(-1+sqrt(5))/2Fn=((1-sqrt(5))/2)^2
两式相减得
sqrt(5)Fn=((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2
Fn=(((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2)/sqrt(5)

『陆』 斐波那契数列的通项公式

设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

『柒』 斐波那契数列通项公式

如图:

斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:

F(0)=0,F(1)=1,F(n)=F(n - 1)+F(n - 2)(n≥ 2,n∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

斐波那契数列特性之平方与前后项:

从第二项开始(构成一个新数列,第一项为1,第二项为2,……),每个偶数项的平方都比前后两项之积多1,每个奇数项的平方都比前后两项之积少1。

如:第二项 1 的平方比它的前一项 1 和它的后一项 2 的积 2 少 1,第三项 2 的平方比它的前一项 1 和它的后一项 3 的积 3 多 1。

(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项 1 开始数,第 4 项 5 是奇数,但它是偶数项,如果认为 5 是奇数项,那就误解题意,怎么都说不通)

『捌』 求斐波那契数列的通项公式完整步骤

斐波那契数列通项公式推导方法
Fn+1=Fn+Fn-1

两边加kFn
Fn+1+kFn=(k+1)Fn+Fn-1
当k!=1时
Fn+1+kFn=(k+1)(Fn+1/(k+1)Fn-1)


Yn=Fn+1+kFn

当k=1/k+1,且F1=F2=1时
因为
Fn+1+kFn=1/k(Fn+kFn-1)
=>
Yn=1/kYn-1
所以
Yn为q=1/k=1(1/k+1)=k+1的等比数列

那么当F1=F2=1时
Y1=F2+kF1=1+k*1=k+1=q
根据等比数列的通项公式
Yn=Y1q^(n-1)=q^n=(k+1)^n
因为k=1/k+1=>k^2+k-1=0
解为 k1=(-1+sqrt(5))/2
k2=(-1-sqrt(5))/2
将k1,k2代入
Yn=(k+1)^n
,和Yn=Fn+1+kFn
得到
Fn+1+(-1+sqrt(5))/2Fn=((1+sqrt(5))/2)^2
Fn+1+(-1+sqrt(5))/2Fn=((1-sqrt(5))/2)^2
两式相减得
sqrt(5)Fn=((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2

Fn=(((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2)/sqrt(5)

『玖』 斐波那契数列通项公式的几种求法

1.

x(1) = 1, x(2) = 1, x(3) = x(1) + x(2) = 2, ..., x(n) = x(n-1) + x(n-2), ...

这就是斐波那契数列


设x(n) + a1 x(n-1) =a2(x(n-1) + a1 x(n-2))

a2 - a1 = 1

a2 X a1 = 1


{x(n) + a1 x(n-1)} 就是等比数列

结果为 x(n) + a1 x(n-1) = b1 X a2^n

设x(n) + c1 X a2^n = c2 (x(n-1) + c1 X a2^(n-1))

c2 = -a1

c1 X c2 / a2 - c1 = b1


{x(n) + c1 X a2^n}为等比数列

计算出上面的所有待定的参数, 就容易得到:

『拾』 斐波那契数列的通项公式是怎么求出来的

斐波那契数列:1、1、2、3、5、8、13、21、……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
迭代法
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式
解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))
得α+β=1
αβ=-1
构造方程x²-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2
所以
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2
由式1,式2,可得
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}