當前位置:首頁 » 分析預測 » garch模型分析股票市場的波動性
擴展閱讀
18年蘋果股票最低價格 2025-09-11 10:33:48
海灣資源的股票價格 2025-09-11 09:08:08
股票總資產看哪裡 2025-09-11 08:36:39

garch模型分析股票市場的波動性

發布時間: 2021-09-23 18:26:32

Ⅰ 請問怎麼用EVIEWS實現DCC-GARCH模型想研究兩個金融市場之間的波動溢出效應,求大神~!高分!

EVIEWS只能實現正態分布、t分布、GED分布下的ARCH、GARCH、EGARCH、TGARCH、PARCH等模型的估計,但是像CCC-GARCH、DCC-GARCH等復合GARCH模型的估計EViews是無法實現的。要對這個進行估計的話簡單的辦法是利用OXmetrix軟體做,也可以用R和Matlab編程實現。

Ⅱ 用GARCH(1,1)模型對股票收盤價收益率序列建模,如何在eviews軟體中得出收益率序列的波動性方差

接分啦。。。找到一篇不錯的文章
樓主看下,參考資料:
2.關聯規則挖掘過程、分類及其相關演算法
2.1關聯規則挖掘的過程
關聯規則挖掘過程主要包含兩個階段:第一階段必須先從資料集合中找出所有的高頻項目組(Frequent Itemsets),第二階段再由這些高頻項目組中產生關聯規則(Association Rules)。
關聯規則挖掘的第一階段必須從原始資料集合中,找出所有高頻項目組(Large Itemsets)。高頻的意思是指某一項目組出現的頻率相對於所有記錄而言,必須達到某一水平。一項目組出現的頻率稱為支持度(Support),以一個包含A與B兩個項目的2-itemset為例,我們可以經由公式(1)求得包含項目組的支持度,若支持度大於等於所設定的最小支持度(Minimum Support)門檻值時,則稱為高頻項目組。一個滿足最小支持度的k-itemset,則稱為高頻k-項目組(Frequent k-itemset),一般表示為Large k或Frequent k。演算法並從Large k的項目組中再產生Large k+1,直到無法再找到更長的高頻項目組為止。
關聯規則挖掘的第二階段是要產生關聯規則(Association Rules)。從高頻項目組產生關聯規則,是利用前一步驟的高頻k-項目組來產生規則,在最小信賴度(Minimum Confidence)的條件門檻下,若一規則所求得的信賴度滿足最小信賴度,稱此規則為關聯規則。例如:經由高頻k-項目組所產生的規則AB,其信賴度可經由公式(2)求得,若信賴度大於等於最小信賴度,則稱AB為關聯規則。
就沃爾馬案例而言,使用關聯規則挖掘技術,對交易資料庫中的紀錄進行資料挖掘,首先必須要設定最小支持度與最小信賴度兩個門檻值,在此假設最小支持度min_support=5% 且最小信賴度min_confidence=70%。因此符合此該超市需求的關聯規則將必須同時滿足以上兩個條件。若經過挖掘過程所找到的關聯規則「尿布,啤酒」,滿足下列條件,將可接受「尿布,啤酒」的關聯規則。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%於此應用範例中的意義為:在所有的交易紀錄資料中,至少有5%的交易呈現尿布與啤酒這兩項商品被同時購買的交易行為。Confidence(尿布,啤酒)>=70%於此應用範例中的意義為:在所有包含尿布的交易紀錄資料中,至少有70%的交易會同時購買啤酒。因此,今後若有某消費者出現購買尿布的行為,超市將可推薦該消費者同時購買啤酒。這個商品推薦的行為則是根據「尿布,啤酒」關聯規則,因為就該超市過去的交易紀錄而言,支持了「大部份購買尿布的交易,會同時購買啤酒」的消費行為。
從上面的介紹還可以看出,關聯規則挖掘通常比較適用與記錄中的指標取離散值的情況。如果原始資料庫中的指標值是取連續的數據,則在關聯規則挖掘之前應該進行適當的數據離散化(實際上就是將某個區間的值對應於某個值),數據的離散化是數據挖掘前的重要環節,離散化的過程是否合理將直接影響關聯規則的挖掘結果。
2.2關聯規則的分類
按照不同情況,關聯規則可以進行分類如下:
1.基於規則中處理的變數的類別,關聯規則可以分為布爾型和數值型。
布爾型關聯規則處理的值都是離散的、種類化的,它顯示了這些變數之間的關系;而數值型關聯規則可以和多維關聯或多層關聯規則結合起來,對數值型欄位進行處理,將其進行動態的分割,或者直接對原始的數據進行處理,當然

Ⅲ GARCH模型測股票波動性需要什麼數據

你只需下載股票每日歷史價位就可以了。比方說你下載的是每日開盤價(用每日均價也是可以的),記為S1,S2, S3。。。然後,你需要把這些數字轉換成價格日變化率,即(S2-S1)/S1, (S3-S2)/S2,...等等,然後把這組變化率數據導入Eviews, 按下面鏈接頁面的步驟操作就可以,很容易的。
http://perso.fundp.ac.be/~mpetijea/MyEviews/Clips/clip17.html
加油。

Ⅳ eviews中如何用garch(1,1)計算股票波動率

打開Eviews然後點擊Quick然後點擊Equation Estimation,然後選擇ARCH方法,然後估計就行了
股票波動率:
波動率是指標的資產投資回報率的變化程度,有實際波動率和歷史波動率之分。它是江恩理論的一個重要內容,在期貨期權市場的指導意義較股票市場更大。下面我們將對波動率的計算及交易策略進行詳細講解,希望對股民有一定的指導意義,趕緊跟著小編一起學習波動率的知識吧!
一、波動率:概述
波動率是指標的資產投資回報率的變化程度,有實際波動率和歷史波動率之分。它是江恩理論的一個重要內容,在期貨期權市場的指導意義較股票市場更大。
(一)、實際波動率
實際波動率又稱作未來波動率,它是指對期權有效期內投資回報率波動程度的度量,由於投資回報率是一個隨機過程,實際波動率永遠是一個未知數。或者說,實際波動率是無法事先精確計算的,人們只能通過各種辦法得到它的估計值。
(二)、歷史波動率
歷史波動率是指投資回報率在過去一段時間內所表現出的波動率,它由標的資產市場價格過去一段時間的歷史數據(即St的時間序列資料)反映。這就是說,可以根據{St}的時間序列數據,計算出相應的波動率數據,然後運用統計推斷方法估算回報率的標准差,從而得到歷史波動率的估計值。顯然,如果實際波動率是一個常數,它不隨時間的推移而變化,則歷史波動率就有可能是實際波動率的一個很好的近似。
二、波動率:計算
江恩理論認為,波動率分上升趨勢的波動率計算方法和下降趨勢的波動率計算方法。
(一)、上升趨勢的波動率計算方法是:在上升趨勢中,底部與底部的距離除以底部與底部的相隔時間,取整。
上升波動率=(第二個底部-第一個底部)/兩底部的時間距離
(二)、下降趨勢的波動率計算方法是:在下降趨勢中,頂部與頂部的距離除以頂部與頂部的相隔時間,取整。並用它們作為坐標刻度在紙上繪制。
下降波動率=(第二個頂部-第一個頂部)/兩頂部的時間距離
三、波動率:交易策略
對於投資者來說,期貨市場上除了牛熊市之外,更多的時間處於一種無法辨別價格走勢或者價格沒有大幅變化的狀況。此時的交易策略可以根據市場波動率的大小具體細分。當市場預期波動較小價格變化不大時,可採取賣出跨式組合和賣出寬跨式組合的策略。當預期市場波動較大但對價格上漲和下跌的方向不能確定時,可採取買入跨式組合和買入寬跨式組合的策略。
賣出跨式組合由賣出一手某一執行價格的買權, 同時賣出一手同一執行價格的賣權組成。
採用該策略的動機在於:認為市場走勢波動不大,可以賣出期權賺取權利金收益。但是一旦市場價格發生較大波動,那就要面對遭受損失的風險。
「波動率」:波動率是江恩理論的一個重要內容,在期貨期權市場的指導意義較股票市場更大。經過上面對波動率計算方法和交易策略的學習,相信投資者對波動率有了一定的了解。此外投資者在運用波動率指標時還需結合均線和波浪理論來綜合分析.

Ⅳ 如何在eviews中用garch計算股票波動率

garch模型有一個下拉選項的,兩個方程只要會解讀就沒問題

Ⅵ 有關GARCH模型分析股價波動性的優劣性分析

上市公司模型並購重組對公司股價影響的研

Ⅶ 用eviews軟體計算股票波動率,garch(1,1)模型估計出來的結果如下圖,請問那些數值是表示波動率的

c————歐米伽

RESID(-1)^2——阿爾法

GARCH(-1)——貝塔

帶入下面方程式

Ⅷ 如何用GARCH(1,1)求股票的具體波動率數據

以哈飛股份(600038)為例,運用GARCH(1,1)模型計算股票市場價值的波動率。

GARCH(1,1)模型為:

(1)

(2)

其中, 為回報系數, 為滯後系數, 和 均大於或等於0。

(1)式給出的均值方程是一個帶有誤差項的外生變數的函數。由於是以前面信息為基礎的一期向前預測方差,所以稱為條件均值方程。

(2)式給出的方程中: 為常數項, (ARCH項)為用均值方程的殘差平方的滯後項, (GARCH項)為上一期的預測方差。此方程又稱條件方差方程,說明時間序列條件方差的變化特徵。

通過以下六步進行求解:

本文選取哈飛股份2009年全年的股票日收盤價,採用Eviews 6.0的GARCH工具預測股票收益率波動率。具體計算過程如下:

第一步:計算日對數收益率並對樣本的日收益率進行基本統計分析,結果如圖1和圖2。

日收益率採用JP摩根集團的對數收益率概念,計算如下:

其中Si,Si-1分別為第i日和第i-1日股票收盤價。

圖1 日收益率的JB統計圖

對圖1日收益率的JB統計圖進行分析可知:

(1)標准正態分布的K值為3,而該股票的收益率曲線表現出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大於正態分布,說明存在著較為明顯的「尖峰厚尾」形態;

(2)偏度值與0有一定的差別,序列分布有長的左拖尾,拒絕均值為零的原假設,不屬於正態分布的特徵;

(3)該股票的收益率的JB統計量大於5%的顯著性水平上的臨界值5.99,所以可以拒絕其收益分布正態的假設,並初步認定其收益分布呈現「厚尾」特徵。

以上分析證明,該股票收益率呈現出非正態的「尖峰厚尾」分布特徵,因此利用GARCH模型來對波動率進行擬合具有合理性。

第二步:檢驗收益序列平穩性

在進行時間序列分析之前,必須先確定其平穩性。從圖2日收益序列的路徑圖來看,有比較明顯的大的波動,可以大致判斷該序列是一個非平穩時間序列。這還需要嚴格的統計檢驗方法來驗證,目前流行也是最為普遍應用的檢驗方法是單位根檢驗,鑒於ADF有更好的性能,故本文採用ADF方法檢驗序列的平穩性。

從表1可以看出,檢驗t統計量的絕對值均大於1%、5%和10%標准下的臨界值的絕對值,因此,序列在1%的顯著水平下拒絕原假設,不存在單位根,是平穩序列,所以利用GARCH(1,1)模型進行檢驗是有效的。

圖2 日收益序列圖

表1ADF單位根檢驗結果

第三步:檢驗收益序列相關性

收益序列的自相關函數ACF和偏自相關函數PACF以及Ljung-Box-Pierce Q檢驗的結果如表3(滯後階數 =15)。從表4.3可以看出,在大部分時滯上,日收益率序列的自相關函數和偏自相關函數值都很小,均小於0.1,表明收益率序列並不具有自相關性,因此,不需要引入自相關性的描述部分。Ljung-Box-Pierce Q檢驗的結果也說明日收益率序列不存在明顯的序列相關性。

表2自相關檢驗結果

第四步:建立波動性模型

由於哈飛股份收益率序列為平穩序列,且不存在自相關,根據以上結論,建立如下日收益率方程:

(3)

(4)

第五步:對收益率殘差進行ARCH檢驗

平穩序列的條件方差可能是常數值,此時就不必建立GARCH模型。故在建模前應對收益率的殘差序列εt進行ARCH檢驗,考察其是否存在條件異方差,收益序列殘差ARCH檢驗結果如表3。可以發現,在滯後10階時,ARCH檢驗的伴隨概率小於顯著性水平0.05,拒絕原假設,殘差序列存在條件異方差。在條件異方差的理論中,滯後項太多的情況下,適宜採用GARCH(1,1)模型替代ARCH模型,這也說明了使用GARCH(1,1)模型的合理性。

表3日收益率殘差ARCH檢驗結果

第六步:估計GARCH模型參數,並檢驗

建立GARCH(1,1)模型,並得到參數估計和檢驗結果如表4。其中,RESID(-1)^2表示GARCH模型中的參數α,GARCH(-1)表示GARCH模型中的參數β,根據約束條件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,滿足約束條件。同時模型中的AIC和SC值比較小,可以認為該模型較好地擬合了數據。

表4日收益率波動率的GARCH(1,1)模型的參數估計

Ⅸ garch模型能預測股票價格波動率嗎

我認為不大可能