當前位置:首頁 » 交易平台 » python股票交易情況獲取爬蟲程序
擴展閱讀
浙江圍海2018股票行情 2025-09-14 01:34:31
買股票用什麼軟體穩 2025-09-14 00:52:59

python股票交易情況獲取爬蟲程序

發布時間: 2021-07-13 03:05:00

1. python用什麼方法或者庫可以拿到全部股票代碼

首先你需要知道哪個網站上有所有股票代碼,然後分析這個網站股票代碼的存放方式,再利用python寫一個爬蟲去爬取所有的股票代碼

2. 如何利用python爬蟲獲取數據

python是一款應用非常廣泛的腳本程序語言,谷歌公司的網頁就是用python編寫。python在生物信息、統計、網頁製作、計算等多個領域都體現出了強大的功能。python和其他腳本語言如java、R、Perl一樣,都可以直接在命令行里運行腳本程序。工具/原料python;CMD命令行;windows操作系統方法/步驟1、首先下載安裝python,建議安裝2.7版本以上,3.0版本以下,由於3.0版本以上不向下兼容,體驗較差。2、打開文本編輯器,推薦editplus,notepad等,將文件保存成.py格式,editplus和notepad支持識別python語法。腳本第一行一定要寫上#!usr/bin/python表示該腳本文件是可執行python腳本如果python目錄不在usr/bin目錄下,則替換成當前python執行程序的目錄。3、編寫完腳本之後注意調試、可以直接用editplus調試。調試方法可自行網路。腳本寫完之後,打開CMD命令行,前提是python已經被加入到環境變數中,如果沒有加入到環境變數,請網路4、在CMD命令行中,輸入「python」+「空格」,即」python「;將已經寫好的腳本文件拖拽到當前游標位置,然後敲回車運行即可。

3. Python中怎麼用爬蟲爬

Python爬蟲可以爬取的東西有很多,Python爬蟲怎麼學?簡單的分析下:
如果你仔細觀察,就不難發現,懂爬蟲、學習爬蟲的人越來越多,一方面,互聯網可以獲取的數據越來越多,另一方面,像 Python這樣的編程語言提供越來越多的優秀工具,讓爬蟲變得簡單、容易上手。
利用爬蟲我們可以獲取大量的價值數據,從而獲得感性認識中不能得到的信息,比如:
知乎:爬取優質答案,為你篩選出各話題下最優質的內容。
淘寶、京東:抓取商品、評論及銷量數據,對各種商品及用戶的消費場景進行分析。
安居客、鏈家:抓取房產買賣及租售信息,分析房價變化趨勢、做不同區域的房價分析。
拉勾網、智聯:爬取各類職位信息,分析各行業人才需求情況及薪資水平。
雪球網:抓取雪球高回報用戶的行為,對股票市場進行分析和預測。
爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。
1.學習 Python 包並實現基本的爬蟲過程
2.了解非結構化數據的存儲
3.學習scrapy,搭建工程化爬蟲
4.學習資料庫知識,應對大規模數據存儲與提取
5.掌握各種技巧,應對特殊網站的反爬措施
6.分布式爬蟲,實現大規模並發採集,提升效率

4. Python爬蟲可以爬取什麼

Python爬蟲可以爬取的東西有很多,Python爬蟲怎麼學?簡單的分析下:

如果你仔細觀察,就不難發現,懂爬蟲、學習爬蟲的人越來越多,一方面,互聯網可以獲取的數據越來越多,另一方面,像 Python這樣的編程語言提供越來越多的優秀工具,讓爬蟲變得簡單、容易上手。

利用爬蟲我們可以獲取大量的價值數據,從而獲得感性認識中不能得到的信息,比如:

知乎:爬取優質答案,為你篩選出各話題下最優質的內容。

淘寶、京東:抓取商品、評論及銷量數據,對各種商品及用戶的消費場景進行分析。

安居客、鏈家:抓取房產買賣及租售信息,分析房價變化趨勢、做不同區域的房價分析。

拉勾網、智聯:爬取各類職位信息,分析各行業人才需求情況及薪資水平。

雪球網:抓取雪球高回報用戶的行為,對股票市場進行分析和預測。

爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。

掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。

對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……

但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。

在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。

1.學習 Python 包並實現基本的爬蟲過程

2.了解非結構化數據的存儲

3.學習scrapy,搭建工程化爬蟲

4.學習資料庫知識,應對大規模數據存儲與提取

5.掌握各種技巧,應對特殊網站的反爬措施

6.分布式爬蟲,實現大規模並發採集,提升效率

學習 Python 包並實現基本的爬蟲過程

大部分爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。

Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。

如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。

當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。

了解非結構化數據的存儲

爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。

開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。

當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。

學習 scrapy,搭建工程化的爬蟲

掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。

scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。

學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。

學習資料庫基礎,應對大規模數據存儲

爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。

MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。

掌握各種技巧,應對特殊網站的反爬措施

當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。

遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。

往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了.

分布式爬蟲,實現大規模並發採集

爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。

分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。

Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。

所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架構了,實現一些更加自動化的數據獲取。

你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好。

因為爬蟲這種技術,既不需要你系統地精通一門語言,也不需要多麼高深的資料庫技術,高效的姿勢就是從實際的項目中去學習這些零散的知識點,你能保證每次學到的都是最需要的那部分。

當然唯一麻煩的是,在具體的問題中,如何找到具體需要的那部分學習資源、如何篩選和甄別,是很多初學者面臨的一個大問題。

以上就是我的回答,希望對你有所幫助,望採納。

5. 如何用python 爬蟲抓取金融數據

獲取數據是數據分析中必不可少的一部分,而網路爬蟲是是獲取數據的一個重要渠道之一。鑒於此,我拾起了Python這把利器,開啟了網路爬蟲之路。

本篇使用的版本為python3.5,意在抓取證券之星上當天所有A股數據。程序主要分為三個部分:網頁源碼的獲取、所需內容的提取、所得結果的整理。

一、網頁源碼的獲取

很多人喜歡用python爬蟲的原因之一就是它容易上手。只需以下幾行代碼既可抓取大部分網頁的源碼。

為了減少干擾,我先用正則表達式從整個頁面源碼中匹配出以上的主體部分,然後從主體部分中匹配出每隻股票的信息。代碼如下。

pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之間的所有代碼pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之間的所有信息

其中compile方法為編譯匹配模式,findall方法用此匹配模式去匹配出所需信息,並以列表的方式返回。正則表達式的語法還挺多的,下面我只羅列所用到符號的含義。

語法 說明

. 匹配任意除換行符「 」外的字元

* 匹配前一個字元0次或無限次

? 匹配前一個字元0次或一次

s 空白字元:[<空格> fv]

S 非空白字元:[^s]

[...] 字元集,對應的位置可以是字元集中任意字元

(...) 被括起來的表達式將作為分組,裡面一般為我們所需提取的內容

正則表達式的語法挺多的,也許有大牛隻要一句正則表達式就可提取我想提取的內容。在提取股票主體部分代碼時發現有人用xpath表達式提取顯得更簡潔一些,看來頁面解析也有很長的一段路要走。

三、所得結果的整理

通過非貪婪模式(.*?)匹配>和<之間的所有數據,會匹配出一些空白字元出來,所以我們採用如下代碼把空白字元移除。

stock_last=stock_total[:] #stock_total:匹配出的股票數據for data in stock_total: #stock_last:整理後的股票數據
if data=='':
stock_last.remove('')

最後,我們可以列印幾列數據看下效果,代碼如下

print('代碼',' ','簡稱',' ',' ','最新價',' ','漲跌幅',' ','漲跌額',' ','5分鍾漲幅')for i in range(0,len(stock_last),13): #網頁總共有13列數據
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])

6. 求一個python網路爬蟲的代碼(獲得某網頁內容)

http://lovesoo.org/getting-started-python-web-crawler-to-crawl-the--post-bar-content-instance.html

7. python爬蟲獲取東方財富股票論壇內容分析,怎樣

付費可以幫寫

8. 哪本書介紹python獲取雅虎股票數據

應該沒有書專門介紹 如何獲取雅虎股票數據吧?
你是想了解爬蟲方面的吧?
基本模塊:urllib/urllib2/requests 用於發出URL請求,獲取相應雅虎數據;
beautifulsoup或者lxml 用於解析上面獲取到的html內容;
如果要小題大做的話,你也可以了解一下爬蟲框架:scrpy

9. 怎樣用 Python 寫一個股票自動交易的程序

概率炒股法:
下面方法買漲不買跌,同時避免被套,缺點,手續費比較高,但完全可以吃完整個牛市,熊市不會被套。
用python獲取股票價格,如tushare,如果發現股票當天漲幅在大盤之上(2點30到2點50判斷),買入持有一天,下跌當天就別買,你可以用概率論方法,根據資金同時持有5支,10支或20支,這樣不怕停盤影響,理論上可以跑贏大盤。好處:避免人為沖動,缺點手續費高
還有一種是操作etf,如大盤50etf,etf300,中小板etf,創業板etf,當天2.30分判斷那個etf上漲就買入那支,買入漲幅最大的,不上漲什麼都不買,持有一天,第二天上午判斷一下,如果下跌超過2%賣掉。好處:不會踩地雷,缺點:漲隨大盤,我比較推薦這個方法,外圍的風險比較小。
具體的python程序我有,比上面復雜,有止贏止損位,資金管理,監視管理,我用在實盤當中,自動化下單也已解決。
我覺得程序的成敗不在一日之功,在於長期穩定賺錢,如運行十年,過多的數據分析也無意義,因為預測未來永遠是一個概率問題,不是百分之百確定的,如果你的程序能在長時間多次數上戰勝市場,你的程序就能趨向大數定理。
否則一時的回撤會讓你停止程序自動執行,而無法趨向大數定理中的穩定概率。
如果有一個程序能百分之99確定,那麼基本上肯定是分析了內幕交易數據,和徐x一樣,每次重倉一支股,這種手法應該是得到了內幕,也就不需要什麼程序來交易了。
巴菲特的交易模式實質上也是內幕交易的一種,因為他靠的是外在分析,實地考查,估計這是尋找內幕的手段,現在做大了,這種效果就不靈了,收益也下降了,美國經濟也下滑了,所以巴菲特的未來是必定是暗淡的,因為內幕交易的池子有限,資金量大了不好操作。
想想如果巴菲特生在蘇聯,印度,日本等等其他國家,他可能在街頭要飯,美國二戰後經濟環境加傾向內幕造就了他,而不是炒股技術有多神。所以巴菲特不屑於程序化交易。
巴菲特及不少美國式的股神實際上是倖存者偏差造成的,你想想蘇聯的股神在那裡?為什麼一個都沒有?(「沉默的數據」、「死人不會說話」)
我覺得未來真正能成股神必定是程序,不是人,因為一個好的程序策略可以用一輩子,實現長期穩定增長,當然前提是社會經濟環境穩定,不會出現類似蘇聯的動亂,也不會出現日本式的惡性通脹(對貨幣m2有點擔心)。

太多的股票讓股民每天沉浸在選股的游戲中,選股造就了券商的行情軟體,實際上很多數據都是沒有用的,所有的關鍵是按操作方法永遠執行下去才能趨向穩定概率,否則今天換一種明天換一種方法,今天按kdj,明天按macd,後天按boll,大後天按ddx,大大後天按自編指標,多條件選股,最後錢都交手續費或止損不及時被套牢了。這時券商收傭金的目的也就達到了,每年券商收的傭金比股市分紅要高。不管行情如何,只要多請幾個股評員,總有方向說對的,玩個概率游戲讓大家頻繁交易,券商的收入只會增不會降。所以千萬別信股評,玩的是概率游戲,如同預測硬幣的正反,請十個股評師必定有個能預測三次正確的神股評。你信這個神股評,後面可能是三次都不準,呵呵。所以券商和行情軟體總會在收盤或午休時彈出各種消息或評價,說實在的這種東西沒有一分錢的價值。可能早就寫好了上漲的說法是模塊a,下跌的說法是模板b,平市的說法是模板c,只是填上當天數據即可,都是八股文,都是馬後炮,一樣的事件上午說成是上漲理由,下午說成是下跌理由。
程序的策略經過測試後的關鍵在於穩定執行,長期穩定執行,長期長期穩定穩定執行執行,重要的事說三遍。

人性無法戰勝的弱點是執行力,小學生都懂的天天向上,每日進步,世間有幾人能做到?而穩定幾十年執行更是難上加難,如同背英語單詞一樣,理論上一天背一百個,一百天就可以一萬詞,但十年,二十年過去了,你可能還是三千詞以下。

用程序的目的就是百分之百執行到位,沒有折扣,真正戰勝人性的弱點,和t+1沒有關系。

另外通過一定方法降低手續費也可以使你的資金活得更久,如把上面的日模型改為周或月模型。

10. python爬蟲程序應該怎麼寫具體要求如下

樓主你好,爬蟲的作用是爬取指定的url頁面信息,如果要按照你的要求進行輸出信息,需要對爬取的頁面進行解析,是另一個步驟,建議你搜索一下python中解析html頁面的類庫,我推薦beautifulsoup這個庫,功能很強大