當前位置:首頁 » 交易平台 » 股票量化交易程序語言
擴展閱讀
濱江服務股票行情 2025-09-12 04:42:30
如何看一隻股票的分紅 2025-09-12 04:31:31

股票量化交易程序語言

發布時間: 2022-01-09 03:30:44

A. 股票量化交易是什麼

量化交易個以前的股票交易本質沒有區別,只是提高了工作效率,
量化交易分為量化分析和程序化自動交易
量化分析,如果你是普通散戶我現在問幾個問題,第一MACD指標默認參數下,在三千多隻股票日k上近兩年那隻收益最好,那隻虧損最大。這要人工多大的工作量,如果會寫程序代碼,幾行代碼就解決了。在繼續如果調換MACD參數能否增加收益用那幾個參數是最優組合,這要是人工基本無法完成,計算量太大了,但計算機就很快完成了參數優化。
而且量化分析不是技術分析,例如你問一個價值投資者,三千多家上市公司,你知道有多少家連續10年都沒虧損過嗎,同樣幾行代碼就知道。
假如你聽了一個老師的講課,說他的牛x戰法,普散戶聽了你只能價單試試,但量化分析我可以在不同市場不同時間周期,不同品種,進行回測嚴重,優化。這些就是量化分析。
程序化自動交易。
就是利用計算機技術自動交易,這對於散戶比較難實現,簡單的用第三方然間寫幾個交易策略可以實現自動交易。
但當你交易上你就會發現,滑點問題,你的速度不夠快,需要專線網路,需要底層語言的交易系統,高速的硬體設備。
但散戶還是必須要進行量化學習因為這樣才能更好的幫助你分析。
下圖就是最簡單的趨勢指標

B. 股票量化交易是程序化交易嗎

是程序化交易.但前提是使用者,得有一定的計算機編程能力,但這不需要太復雜的編程邏輯,很多軟體都帶公式管理器,就是為一些喜歡程序化的用戶提供的.

C. 股票如何實現量化交易

採用交易介面介入,文化財經好像有!

D. 量化投資要學那個語言好

Matlab 和 C++,一個建模一個執行,足夠了。實在不愛用Matlab的話,R和Python也行。多看書多學習,英語也是很重要的。可以找視頻和書籍學習。

個人推薦《量化投資:以python為工具》主要講解量化投資的思想和策略,並藉助Python 語言進行實戰。《量化投資:以Python為工具》一共分為5 部分,第1 部分是Python 入門,第2 部分是統計學基礎,第3 部分是金融理論、投資組合與量化選股,第4 部分是時間序列簡介與配對交易,第5 部分是技術指標與量化投資。《量化投資:以Python為工具》首先對Python 編程語言進行介紹,通過學習,讀者可以迅速掌握用Python 語言處理數據的方法,並靈活運用Python 解決實際金融問題;其次,向讀者介紹量化投資的理論知識,主要講解量化投資所需的數量基礎和類型等方面;最後講述如何在Python 語言中構建量化投資策略。

E. 量化交易程序開發是做什麼的

量化交易是利用計算機程序語言編寫程序來實現,分析行情走勢,分析公司基本面,分析經濟數據,也可以實現自動化交易,舉個簡單例子,以前的價值投資者投資股票調研,你需要實地考察,現在很簡單,我投資某上市公司,想調用它的產品,我只需要檢測跟這產品有關的活躍論壇,群,幾大網路銷售平台的銷量評價,就能獲得一手調用數據了。量化交易比普通際交易者的優勢就在於,他的分析效率高,你問一個主觀交易者MACD指標在三千多隻股票里哪只收益最高,那隻收益最差,最優參數是多少,主觀交易者會告訴你指標不能信那東西都是主力騙人的。因為他不可能知道人工回測三千多隻股票的MACD指標一個金叉一個死叉的算還沒優化參數呢,人都得累死。但你問量化交易者他幾行代碼,計算機跑一會,三千多隻股票就回策完了。並告訴你歷史上那些參數是最優的哪些是最差的。
量化交易還有很多優勢,但量化交易本質上和主觀交易沒區別,只是效率大大提高,交易的策略還是以人的思維為主導地位的。目前機器學習還不能自己獨立交易,計算機都是按照人設計好的策略,來執行交易指令的。

F. 國內量化交易平台哪家支持python等多門編程語言開發策略

你好,在金融量化交易領域,掘金量化交易平台可以支持多種主流編程語言的開發,包括python、R、Matlab, C, C++, C# ;可以滿足掌握不同編程語言的量化策略者的需求。

G. 量化投資用什麼編程語言研發策略好呢

么以下我就以程序語言的角度來回答
當然如果已經會了某些語言,那你可以使用熟悉的語言去找網上的學習資源會比較快
如果沒有特別熟悉的語言,或者是願意多學一種非常好用的語言
我的建議是學習Python

我從以下幾點來分別說明

平台資源

國內外使用Python做雲端回測以及運算的免費平台相當的多,例如有 寬客在線,發明者量化,優礦, 等等不勝枚舉,可以使用平台的支持以及社區的互相幫助來學習

容易學習

綜合以上所說,"目前的環境底下" 我推薦Python.(推薦直接下載 Anaconda的集成開發環境)

H. 國外股票程序化交易中所用的程序是用什麼語言編輯的

國外的交易軟體基本都是程序化交易系統。編寫的語言很多,又分散戶和投資機構用。無論哪種語言編輯,執行都是c++

I. 量化演算法交易員一般使用什麼語言為股票趨勢編程 MATLAB

一、三個指數的今日走勢,看量價,看走勢的輕重緩急,關鍵點位。
二、行業板塊指數的漲跌幅,資金交易量,這個與指數結合起來看,看看大盤是健康的還是畸形的。
三、看個股,因為幫客戶做風險控制,所以主要看客戶的個股,計算客戶明日最大虧損值,是否在可以承受范圍之內。

J. 做量化交易選擇什麼語言好呢

量化交易,就是把人能夠識別的信息變成數字,輸入給計算機程序處理,輔助或者代替人類的思考和交易決策。

初學者碰到的第一個問題就是工具的選擇。首先大部分交易員本來不會寫程序,選擇任何一個語言進行策略開發,都有不小的學習成本。更重要的是,選擇了一門語言,接下來開發環境、人員招聘、數據介面與平台、甚至同類人群之間的交流、遇到問題後的支持,都跟著被「套牢」。所以從一開始就必須慎重對待。

先給出答案:對於還沒有確定一套固定量化環境的,建議用Python。

量化交易員面臨的大致選擇有:C/C++/java/C#/R/Matlab/excel等。我們從以下幾個方面考慮簡單做個對比。

注意:這里假設你團隊規模在50人以下。

1 學習成本和應用的廣泛性

C、C++的特點是速度最快,但要想用好,必須對計算機底層架構、編譯器等等有較好的理解,這是非計算機專業的人很難做到的,對於做量化交易來說更是沒有必要。

Java本來是SUN的商業產品,有學習成本和體系的限制,也不適合。

Excel面對GB級別的數據無能為力,這里直接排除。

Python、R和Matlab學起來都簡單,上手也快,可以說是「一周學會編程」。但R和Matlab一般只用來做數據處理,而Python作為一門強大的語言,可以做任何事,比如隨時寫個爬蟲爬點數據,隨時寫個網頁什麼的,更何況還要面對處理實時行情的復雜情況。

2 開始做量化分析後,哪個用起來碰到問題最少,最方便省事?

用歷史數據的回測舉例。假設我們有2014年所有股票的全年日線,現在我們想看看600001的全年前10個最高股價出現在什麼時候。python世界有個強大的pandas庫,所以一句話就解決問題:

dailybar[dailybar [『code』]==『600001』].sort_values([『close』].head(10)

R/Mathlab等科學語言也可以做到。

C/C++沒有完備的第三方庫。如果為了做大量的計算,要自己實現、維護、優化相應的底層演算法,是一件多麼頭疼的事。

Python從一開始就是開源的,有各種第三方的庫可以現成使用。這些底層功能庫讓程序員省去了「造輪子」的時間,讓我們可以集中精力做真正的策略開發工作。

3 現在我們更進一步,要做實時行情分析和決策

以A股的入門級L1數據為例,每3秒要確保處理完3000條快照數據,並完成相應的計算甚至下單。這樣的場景,C和C++倒是夠快了。所以行情軟體比如大智慧、同花順等客戶端都是使用高效率的語言做的,但像客戶端那樣的開發量,絕大部分量化交易機構沒能力也沒必要去做吧。

python的速度足夠對付一般的實時行情分析了。其底層是C實現的,加上很多第三方的C也是C實現,盡管其計算速度比不上原生C程序,但對我們來說是足夠啦。

4 quant離職了,他的研究成果怎麼辦

Python是使用人群最多、社區最活躍的語言之一,也是最受quant歡迎的語言之一。如果你是老闆,你能更容易地招聘到優秀人材,享受到python社區帶來的便利。

附幾個量化中常用的python庫:

- Pandas:

天生為處理金融數據而開發的庫。幾乎所有的主流數據介面都支持Pandas。Python量化必備。

- Numpy:

科學計算包,向量和矩陣處理超級方便

- SciPy:

開源演算法和數學工具包,與Matlab和Scilab等類似

- Matplotlib:

Python的數據畫圖包,用來繪制出各類豐富的圖形和報表。

PS: Python也是機器學習領域被使用最多的語言之一。像tensorflow、scikit-learn、Theano等等對python都有極好的支持。