當前位置:首頁 » 股市行情 » 股票價格符合幾何布朗運動
擴展閱讀
股票價格重估 2025-06-26 13:27:06
東西新萌動 2025-06-26 13:23:52

股票價格符合幾何布朗運動

發布時間: 2022-05-02 21:39:04

① 求經濟B-S期權定價模型的原理還有計算方法

假定股票價格服從幾何布朗運動,即dSt/St=μdt+σdWt. St為t時點股票價格,μ為漂移量,σ為波動率,Wt為標准布朗運動。使用伊藤公式。然後用無套利原理求得BSPDE。

② 為什麼用幾何布朗運動描述股票價格

幾何布朗運動就是物理中典型的隨機運動,其特點就是不可預測,而在股市中的短期股票價格也是不可預測。

③ 幾何布朗運動的在金融中的應用

主條目:布萊克-舒爾斯模型
幾何布朗運動在布萊克-舒爾斯定價模型被用來定性股票價格,因而也是最常用的描述股票價格的模型 。
使用幾何布朗運動來描述股票價格的理由: 幾何布朗運動的期望與隨機過程的價格(股票價格)是獨立的, 這與我們對現實市場的期望是相符的 。 幾何布朗運動過程只考慮為正值的價格, 就像真實的股票價格。 幾何布朗運動過程與我們在股票市場觀察到的價格軌跡呈現了同樣的「roughness」 。 幾何布朗運動過程計算相對簡單。. 然而,幾何布朗運動並不完全現實,尤其存在一下缺陷: 在真實股票價格中波動隨時間變化 (possiblystochastically), 但是在幾何布朗運動中, 波動是不隨時間變化的。 在真實股票價格中, 收益通常不服從正態分布 (真實股票收益有更高的峰度('fatter tails'), 代表了有可能形成更大的價格波動).

④ 計算var時假設股票價格符合什麼運動

VaR 是給定置信水平下,某一金融資產或證券投資組合在未來特定的時間內的最大損失額。也就是說,如果你確定你的投資組合服從某種分布,比如說最簡單的正態分布,那麼vaule at risk就是在正態分布5%(或95%,因為正態是對稱的)的置信水平之下的...

⑤ 假設股票價格服從幾何布朗運動, 那麼裡面的sigma定義是什麼

定義是不是(S(t+dt)-S(t))/(S(t)*dt) 的standard deviation? 如果是這個,它的量綱就應該是t^-1, 不過從幾何布朗運動的模型中看的話又應該是t^-0.5, 因為dW是t^0.5的量綱才對.謝謝了!

⑥ 證券價格服從漂移參數0.05,波動參數0.3的幾何布朗運動,當前價格為95,利率是4% 假設有種

後答案上默認為這個概率等於P[ln(S(0.5)/

⑦ 幾何布朗運動

一、正態隨機變數概率密度函數描述:
(μ為總體均數、σ為標准差)

二、布朗運動的數學描述:
價格時間函數P(x),T+t時刻的價格P(T+t)與T時刻價格P(T)的差值:P(T+t)-P(T)是一個正態隨機變數,分布的平均期望值μt,標准差為。(T>0,t>0)
重大缺陷:
1、按此價格理論上可有負值,但實際中價格不可能存在負值。
2、不論價格初值為何值,固定時間長度的價格差具有相同的正態分布,不符合常理。

三、幾何布朗運動:
把價格差改為價格的漲跌幅:可以避免直接使用布朗運動描述價格的缺陷,即為幾何布朗運動。
是一個正態隨機變數,分布的平均期望值μt,標准差為。(T>0,t>0)
******************

幾何布朗運動
幾何布朗運動的作用是用來模擬股價的變動。它的好處在於,一般形式布朗運動中取值可能為負數,而幾何布朗運動取值永遠不小於0,這一點符合股價永遠不為負的特徵。
幾何布朗運動微分形式的表述。或者稱SDE(隨機微分方程)形式:

其中的S(t)可以理解為股價。
幾何布朗運動函數形式表述:

上述式子告訴我們,可以先生成一服從的一般形式布朗運動,然後求其指數函數,最後乘以S(0),即期初的股價,就可以得到幾何布朗運動。
補充:為何這里t的系數多出一項?具體可以參考伊藤公式。

歡迎求助 三個人的團兒!!!

⑧ 研究衍生品的時候為什麼用幾何布朗運動來模擬股票價格的運行軌跡

其實很簡單,GBM(至少在一定程度上)符合人們對市場的觀察。例如,直觀的說,股票的價格看起來很像隨機遊走,再例如,股票價格不會為負,這樣起碼GBM比普通的布朗運動合適,因為後者是可以為負的。

再稍微復雜一點,對收益率做測試( S(t)/S(t-1) - 1)做測試,發現,哎居然還基本是個正態分布。收益率是正態的,股價就是GBM模型

總之,就是大家做了很多統計測試,發現假設成GBM還能很好的逼近真實數值,比較接近事實。所以就用這個。

其實將精確的數學模型應用到金融的時間非常短。最早是1952年的Markowitz portfolio selection. 那個其實就是一個簡單的優化問題。後來的CAPM APT等諸多模型,也僅僅研究的是一系列證券,他們之間回報、收益率以及其他影響因素關系,沒有涉及到對股價運動的描述。

第一次提出將股價是GBM應用在嚴格模型的是black-scholes model 。在這個模型中提出了若干個假設,其中一個就是股價是GBM的。

⑨ 幾何布朗運動和分數布朗運動有什麼區別

幾何布朗運動 (GBM) (也叫做指數布朗運動) 是連續時間情況下的隨機過程,其中隨機變數的對數遵循布朗運動,[1] also called aWiener process.幾何布朗運動在金融數學中有所應用,用來在布萊克-舒爾斯定價模型中模仿股票價格。
分數布朗運動
世界是非線性的,宇宙萬物絕大部分不是有序的、線性的、穩定的,而是混沌的、非線性的、非穩定和漲落不定的沸騰世界。有序的、線性的、穩定的只存在於我們自己構造的理論宮殿,而現實宇宙充滿了分形。在股票市場的價格波動、心率及腦波的波動、電子元器件中的雜訊、自然地貌等大量的自然現象和社會現象中存在著一類近乎全隨機的現象,它們具有如下特性:在時域或空域上有自相似性和長時相關性和繼承性;在頻域上,其功率譜密度在一定頻率范圍內基本符合1/f的多項式衰減規律。因此被稱為1/f族隨機過程。Benoit Mandelbrot和Van Ness 提出的分數布朗運動(fractional Brownian motion,FBM)模型是使用最廣泛的一種,它具有自相似性、非平穩性兩個重要性質,是許多自然現象和社會現象的內在特性。分數布朗運動被賦予不同的名稱,如分形布朗運動、有偏的隨機遊走(Biased Random walk)、分形時間序列(Fractional time serial)、分形維納過程等。其定義如下:
設0<H<1,Hurst參數為H的分數布朗運動為一連續Gaussian過程,且 ,協方差為 。H=1/2時, 即為標准布朗運動 。
分數布朗運動特徵是時間相關函數C(t)≠0,即有持久性或反持久性,或者說有「長程相關性」,不失一般性,可以給出一維情形的布朗運動及分數布朗運動的定義。分數布朗運動既不是馬爾科夫過程,又不是半鞅,所以不能用通常的隨機來分析。分數布朗運動與布朗運動之間的主要區別為:分數布朗運動中的增量是不獨立的,而布朗運動中的增量是獨立的;分數布朗運動的深層次上和布朗運動的層次上它們的分維值是不同的,分數布朗運動(分形雜訊)的分維值alpha等於1/H,H為Hurst指數,而布朗運動(白雜訊)的分維值都是2。
Hurst在一系列的實證研究中發現,自然現象都遵循「有偏隨機遊走」,即一個趨勢加上雜訊,並由此提出了重標極差分析法(Rescaled Range Analysis,R/S分析)。設R/S表示重標極差,N表示觀察次數,a是固定常數,H表示赫斯特指數,在長達40多年的研究中,通過大量的實證研究,赫斯特建立了以下關系:
R/S=(aN)H
通過對上式取對數,可得:
log(R/S)=H(logN十loga)
只要找出R/S關於N的log/log圖的斜率,就可以來估計H的值。 Hurst指數H用來度量序列相關性和趨勢強度:當H=0.5時,標准布朗運動,時間序列服從隨機漫步;當H≠0.5時,C(t)≠0,且與時間無關,正是分數布朗運動的特徵。當0.5<H<1時,序列是趨勢增強的,遵循有偏隨機遊走過程;當0<H<0.5時,序列是反持續性的。可以看出,Hurst指數能夠很好地刻畫證券市場的波動特徵,將R/S分析應用於金融市場,可以判斷收益率序列是否具有記憶性,記憶性是持續性的還是反持續性的。所以,分數布朗運動是復雜系統科學體系下的數理金融學的一個合適的工具,作為對描述金融市場價格波動行為模型的維納過程的一般化、深刻化具有重要的理論與現實意義。

⑩ 布朗運動的金融數學

將布朗運動與股票價格行為聯系在一起,進而建立起維納過程的數學模型是本世紀的一項具有重要意義的金融創新,在現代金融數學中佔有重要地位。迄今,普遍的觀點仍認為,股票市場是隨機波動的,隨機波動是股票市場最根本的特性,是股票市場的常態。
布朗運動假設是現代資本市場理論的核心假設。現代資本市場理論認為證券期貨價格具有隨機性特徵。這里的所謂隨機性,是指數據的無記憶性,即過去數據不構成對未來數據的預測基礎。同時不會出現驚人相似的反復。隨機現象的數學定義是:在個別試驗中其結果呈現出不確定性;在大量重復試驗中其結果又具有統計規律性的現象。描述股價行為模型之一的布朗運動之維納過程是馬爾科夫隨機過程的一種特殊形式;而馬爾科夫過程是一種特殊類型的隨機過程。隨機過程是建立在概率空間上的概率模型,被認為是概率論的動力學,即它的研究對象是隨時間演變的隨機現象。所以隨機行為是一種具有統計規律性的行為。股價行為模型通常用著名的維納過程來表達。假定股票價格遵循一般化的維納過程是很具誘惑力的,也就是說,它具有不變的期望漂移率和方差率。維納過程說明只有變數的當前值與未來的預測有關,變數過去的歷史和變數從過去到現在的演變方式則與未來的預測不相關。股價的馬爾科夫性質與弱型市場有效性(the weak form of market efficiency)相一致,也就是說,一種股票的現價已經包含了所有信息,當然包括了所有過去的價格記錄。但是當人們開始採用分形理論研究金融市場時,發現它的運行並不遵循布朗運動,而是服從更為一般的幾何布朗運動(geometric browmrian motion)。