1. 如何理解 Black-Scholes 期权定价模型
Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克-斯克尔斯期权定价模型。
1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(Robert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes),同时肯定了布莱克的杰出贡献。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
2. 期权价值评估方法中的布莱克-斯科尔斯期权定价模型的七个假设是什么
布莱克-斯科尔斯期权定价模型的七个假设:
1.在期权寿命期内,买方期权标的股票不发放股利,也不做其他分配;
2.股票或期权的买卖没有交易成本;
3.短期的无风险利率是已知的,并且在期权寿命期内保持不变;
4.任何证券购买者能以短期的无风险利率借得任何数量的资金;
5.允许卖空,卖空者将立即得到所卖空股票当天价格的资金;
6.看涨期权只能在到期日执行;
7.所有证券交易都是连续发生的,股票价格随机游走。
3. Kmv模型将公司股票看做期权,执行价格是违约点还是债务面值
我省公司的股票,如果做几天的话,最近价格的约定颜值可以断。
4. 什么是期权定价模型
期权定价模型(OPM)----由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关 。模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
5. 非上市公司的股票期权如何定价
没有什么特别规定,只要双方接受就可以了
6. 什么是期权定价的BS公式
Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克—斯克尔斯期权定价模型。
B-S-M定价公式
C=S·N(d1)-X·exp(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。
7. 股票指数期权的定价公式
期权定价问题(Options Pricing)一直是理论界与实务界较为关注的热点问题,同时也是开展期权交易所遇到的最为实际的关键问题。期权价格是期权合约中惟一的可变量,它通常由内涵价值与时间价值两部分构成。而决定期权价格的主要因素包括以下几方面:(1)履约价格的高低;(2)期权合约的有效期;(3 )期权标的物市场的趋势;(4)标的物价格波动幅度;(5)利率的变化。股票指数期权价格的确定也是如此。
根据布莱克·修斯的期权定价模型, 可以分别得到欧式看涨股票指数期权和看跌股票指数期权的定价公式为:
c=se-q(T-t)N(d1)-xe-r(T-t)N(d2);
P=xe-r(T-t)N(-d2)N-se-q(T-t)N(-d1)。
其中 ln(SX)+(r-q+σ2/2)(T-t) ┌──
d1=───────────── ,d2=d1-σ│T-T
┌──
σ│T-t
S为股票指数期权的现货价格,X为执行价格,T为到期日,r为无风险年利率,q为年股息率,σ为指数的年变化率即风险。
例如,以期限为两个月的标准普尔500指数的欧式看涨期权,假定现行指数价格为310,期权的协议价格为300,无风险年利率为8%,指数的变化率年平均为20 %,预计第一个月和第二个月的指数平均股息率分别为0.2%和0.3%。将这些条件,即S=310,X=300,r=0.08,σ=0.2,T-T=0.1667,q=0.5%×6=0.03,代入以上的欧式看涨股票指数期权定价公式,可以得到d1=0.5444,d2=0.4628,N(d1)= 0.7069,N(d2)=0.6782,则C=17.28,即一份股票指数期权合约的成本为17.28 美元。
8. Black-Scholes期权定价模型的模型内容
1、股票价格随机波动并服从对数正态分布;
2、在期权有效期内,无风险利率和股票资产期望收益变量和价格波动率是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、股票资产在期权有效期内不支付红利及其它所得(该假设可以被放弃);
5、该期权是欧式期权,即在期权到期前不可实施;
6、金融市场不存在无风险套利机会;
7、金融资产的交易可以是连续进行的;
8、可以运用全部的金融资产所得进行卖空操作。 C=S·N(d1)-X·exp^(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2)/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。
9. Black-Scholes期权定价模型的分红方法
B-S-M模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权。
(一)存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利DT,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S′=S-DT·E-rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:
C=(S-·E-γT·N(D1)-L·E-γT·N(D2)
(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×004=6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。
在此红利现值为:S(1-E-δT),所以S′=S·E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S·E-δT·N(D1)-L·E-γT·N(D2)