㈠ 人类基因组计划的意义及人类建康
人们回顾过去20世纪一百年中所取得的辉煌成就时, 最激动人心的伟大创举之一就是和“曼哈顿的原子弹计划”、“阿波罗人类登月计划”一起被誉为本世纪科学史上三个里程碑的“人类基因组计划”
2000年6月26日是人类生命科学史上一个值得纪念的日子,美国总统克林顿在白宫宣布,人类基因组工作草图已经绘出,人体全部基因的初步测序研究工作完成。这项重大研究成果标志着人类在研究自身的过程中迈出了关键的一步。
现在大家对人类基因组计划(Human Genome Project,HGP)比较熟悉,通常将HGP与阿波罗等月计划和曼哈顿原子弹计划相提并论,生物学家则强调HGP这是人类系统认识自我的最为宏大的科学工程,是人类第一次系统、全面地解读和研究人类遗传物质DNA的全球性合作计划,从重大科学意义、经济效益和社会效益方面来看, HGP无疑是这三者中最突出的,其意义远远大于人类登上月球和原子弹爆炸。
那么究竟什么是使人如此重视的HGP呢?
我们知道所有生物的遗传物质是DNA,它的总和就是基因组,就人类基因组而言,指合成有功能的人体各类细胞中蛋白质及或多肽链和RNA所必须的全部DNA顺序和结构,人体遗传物质综合就是人类基因组,由大约30亿碱基对组成,分布在细胞核的23对染色体中。人类基因组计划是测定人类基因组的全部DNA序列,从而解读所有遗传密码,揭示生命的所有奥秘。
诺贝尔奖获得者杜伯克于1986年在《科学(Science)》杂志上发表的一篇短文中率先提全面解剖人类基因组的计划。1988年,该计划正式获得美国国会批准,并于1990年10月1日</st1:chsdate>正式启动。其总体规划是:拟在15年内至少投资30亿美元,进行对人类基因组的分析。不久,该计划发展成一个由多国政府支持的国际项目,先后有美、英、日、德、法及中国等6个国家参加。HGP其最初的目标是,用15年时间(1990-2005),构建详细的人类基因组遗传图和物理图,确定人类DNA的全部核苷酸序列,定位全部基因,并对其他生物进行类似研究。1993年,又增加了人类基因的鉴定和分离的内容。其终极目标即:阐明人类基因组全部DNA序列;识别基因;建立储存这些信息的数据库;开发数据分析工具;研究HGP实施所带来的伦理、法律和社会问题。1998年, 人类基因组计划增加了基因组多样性研究的内容, 强化了功能基因组研究技术平台体系。
美国政府资助的HGP由国家卫生研究院(NIH)和能源部承担。目前,有美国、德国、日本、英国、法国、中国6个国家的科学家正式加入了这一计划。由于人类基因组计划深远的影响和潜在的经济价值, 除了早期的政府介入外, 时至今日, 世界上几乎所有的大大小小的医药公司,基因组研究公司甚至毫无关系的其它公司都涉足到人类基因组研究中, 其中比较有影响力的包括美国HGS公司, Incyte公司和Celera公司.在人类基因组研究的热潮中, 无形之中形成了一场没有硝烟却异常激烈的基因争夺战. 政府和企业之间, 发达国家之间, 发达国家和发展中国家的基因争夺战亦愈演愈烈, 加速了人类基因组计划研究的进程. 人类基因组计划研究的预期进度表不断提前. 1998年对原计划进行了修改,宣布提前两年即将原定于2005年完成的测序任务提前到2003年完成,将“人类基因组DNA序列图”完成时间再提前到2001年6月。
我国人口占世界人口总数的22%,是一个多民族的群体,我们丰富的人群遗传资源是研究人类基因组多样性、人类进化以及人类疾病相关基因的宝贵材料。国家高技术发展计划(863计划)自1987年开始就注意资助研究基因组的有关技术,我国的人类基因组计划正式启动于1994年。1998年,国家人类基因组南方和北方研究中心和北京华大基因组研究中心相继成立。1999 年9月,我国基因组研究的上述3个中心共同承担了国际人类基因组大规模测序任务的1%。这一事件向世界表明,作为参与该任务的唯一的发展中国家, 我国人类基因组大规模测序工作已经开始,并具有相当的实力。它代表着中国科学家在未来的基因工程产业中占有一席之地。在这个划时代的里程碑上,已经刻上了中国人的名字。通过参与这一计划,可以分享数据、资源、技术与发言权,最终来开发我国自己的基因资源。”
的实施将极大地促进生命科学领域一系列基础研究的发展,阐明基因的结构与功能关系、生命的起源和进化、细胞发育、生产、分化的分子机理,疾病发生的机理等,人类6千多种单基因遗传性疾病和严重危害人类键康的多基因遗传易感性疾病(如心血管疾病、恶性肿瘤、糖尿病等)的发病机制有望得到彻底阐明, 为这些疾病的早期预防、诊断和治疗奠定坚实基础, 为医药产业带来翻天覆地的变化;促进生命科学与信息科学、材料科学和与高新技术产业相结合,刺激相关学科与技术领域的发展,带动起一批新兴的高技术产业;基因组研究中发展起来的技术、数据库及生物学资源,还将推动对农业、畜牧业、能源、环境等相关产业的发展,改变人类社会生产、生活和环境的面貌,把人类带入更佳的生存状态。
以测序为主要内容的HGP已经完成,HGP已经进入了以基因功能研究为主的功能基因组学研究中,衍生了一系列基因组学研究计划,这些包括疾病基因组学、比较基因组学、基因组多样性(单倍型)、肿瘤基因组学、环境基因组学等。甚至诞生了以基因组学研究思路相同和研究策略类似的蛋白质组学、代谢组学、生理组学、化学组学个系统生物学等,总之,系统全面认识人体奥秘的战争已经方兴未艾,越演越烈,勿庸置疑,HGP是集先锋和基础,扮演了最为重要的角色。
在未来10—20年里,人类将解读所有模式生物、模式基因组和代表生物的遗传密码。截至2000年4月15日,国际人类基因组计划已对29种微生物、面包酵母、大肠杆菌、果蝇、线虫、水稻、鸡、小鼠和大鼠进行了测序。人类基因组计划还对几十种病原微生物的基因组进行了序列测定,如与胃病发生密切相关的幽门螺杆菌,引起肺病的结核杆菌和引起梅毒的螺旋体等等基因组测序都已完成,为阐明这些疾病发生的分子机理,设计诊断、治疗和预防的新方法提供了可能性。
利用人类基因组工作草图,人们将更容易、更彻底地理解基因对人类生、老、病、死的作用,使征服疾病、延年益寿和提高人类生命质量等成为可能。根据许多常见病致病基因的排序、定位及其基本作用等信息,科学家就可以找出包括癌症、老年性痴呆症、心脏病等在内的许多人类顽症的病因,有针对地筛选与设计新药;甚至可以根据病人的基因图谱选择或研制相应的药物,纠正基因组中可能出现的遗传缺陷,如矫正胎儿的疾病等,进行基因层次上的诊断与治疗。随着基因研究的深入,人类可以在分子水平上进行人体组织的再生治疗,甚至在病发前治愈疾病,控制人类“衰老”与“长寿”基因,保证人类健康长寿。
人类基因图谱绘成后,科学家将深入研究与各种疾病有关的基因、疾病基因与其他基因及环境的相互作用等。他预计,到2010年或2020年,基因疗法将成为一种普通的治疗方法。 “破译基因组密码的意义就如同在发明电脑的年代,没有人能想象到今天的计算机以及网络如此发展,21世纪将是生物技术的时代,将是基因的时代。”
㈡ 生物的发展状况
你说的是关于生物哪方面的?医药类?
希望我的答案能够帮到你:
国外生物医学市场现状及前景
有关统计资料表明,全球生物技术药品市场96年为127亿美元,1997年约为146亿美元(+15%)。如果保持目前的增长速度,2000年市场总销售额可能超过200亿美元,并将出现100种现代生物技术药品。虽然生物技术药品目前在全球1500亿美元的药品市场中仅占8%,但由于其能弥补化学药品的根本缺陷(成本低、成功率高、安全可靠等优点),使之具有极强的生命力和成长性。
据1995年及1996年美洲药品研究及制造商协会的调查报告,生物技术药品开发经美国FDA及欧盟批准和审核进入临床实验的药品1994年为143件,1995年为234件,1996年为250件。在主要产品种类中,国际市场销售最好的基因工程药物有促红细胞生长素(EPO)、G-CSF、白介素、干扰素(α、β、γ)、胰岛素、T-PA等,还有细胞因子、受体类药物、凝血Ⅷ因子等,疫苗以乙肝病毒疫苗为主,此外还有用于检测诊断的PCR技术的试剂、克隆用的探针等实验用品。
在欧洲生物技术药物市场上,1995年市场份额最大的是人胰岛素,为38%,但其达到了增长峰值,从增长角度而言,干扰素增长率将由95年的2.3%增加到2002年的9.5%,品种由过去的a-干扰素、g-干扰素增加到四个品种,重组DNAb-干扰素在欧洲获得用于多发性硬化症将会提高干扰素总市场份额。集落刺激因子亦保持上述增长率,但该市场主要被粒细胞巨噬细胞集落刺激因子所统治,而该产品因其副作用遇到了促销问题,其营业额预计会从1995年的4.5%下降到2002年的13%。EPO将从1995年的0.6%上升到22.5%,生长激素新适应症的批准和提出申请可能会加快这一市场的发展,95年其占欧洲生物技术药物市场的16.3%,但政府的降价措施可能会使增长幅度减少到2002年的14%。据欧洲Frost&Sullivan公司的最新市场研究报告估计,欧洲EPO、集落刺激因子、干扰素、人胰岛素和人生长素等领域的生物技术派生市场规模将由1995年的23.4亿美元增加到2002年的41.5亿美元,这主要是由于新产品的不断上市和适应症的增加
在欧美市场上,针对现有的重组药物进行分子改造的某些第二代基因药物已经上市,如重组新钠素、胞内多肽等;另外,重组细胞因子融合蛋白、人源单克隆抗体、细胞因子、反义核酸以及基因治疗、制备抗原的新手段、新技术、转基因动物模型的应用等也都有了实质性进展。国外生物医药的最新发展动向突出表现在以下几个方面:
克隆技术。1997年克隆多莉羊的出现使人类的克隆技术出现划时代的革命。更值得注意的是与克隆技术相关的一项最新进展。1999年4月美国的研究人员将得自成年人骨髓的间充质干细胞在体外成功培养分化为软骨、脂肪和骨骼细胞。采用该技术开发以干细胞为基础的再生药物将具有庞大的市场,可治疗软骨损伤、骨折愈合不良、心脏病、癌症和衰老引起的退化症等疾病。
血管发生。用于治疗癌症的血管发生抑制因子引起媒体的高度关注。1998年5月《纽约时报》介绍两种处于临床前开发阶段的抗血管生长因子一angiostatin(制管张素)和endostatin(内皮抑制素)的功效,引起投资者竞相购买EntreMed公司的股票,使该公司的市值在一天内增加4.87亿美元达到6.35亿美元。第三种抗血管生长蛋白称为vasculostatin(血管抑制素),1998年5月发布时只有体外试验数据。1998年3月公布了第一次用生长激素刺激心脏周围的血管生长的临床实验结果,该法可用于防治冠状动脉疾病引起的动脉阻塞。此类血管发生疗法与癌症疗法的作用正好相反,它通过刺激动脉内壁的内皮细胞生长,形成新的血管,以治疗冠状动脉疾病和局部缺血。
艾滋病疫苗。艾滋病疫苗的研究重新引起人们的注意。1998年6月VaxGen宣布在美国和泰国进行一种新的艾滋病疫苗Aidsvaxgpl20的Ⅲ期临床。这是一种新的双价疫苗,该公司认为它将比以前的单价疫苗更有效。1999年6月美国国立卫生研究院新成立了一个疫苗研究中心,将研制艾滋病疫苗作为中心任务之一。
药物基因组学。药物基因组学利用基因组学和生物信息学研究获得的有关病人和疾病的详细知识,针对某种疾病的特定人群设计开发最有效的药物,以及鉴别该特定人群的诊断方法,使疾病的治疗更有效、更安全。采取这种策略,医药公司可以针对一种疾病的不同亚型,生产同一种药物的一系列变构体,医生可以根据不同的病人选用该种药物的相应变构体。这一技术可根据病人量身定制新药,使功效和适应症十分明确,可以减少临床试验病人数和费用,缩短临床审批周期;药物上市后,由于具有明确、特异的功效和较小的副作用,更容易说服医生使用这类价格较贵的新药。当然药物基因组技术的应用也有不利的一面。大多数药物因针对性加强,使得适应症减少,市场规模也随之缩小;此外,由于与遗传学检查联用而导致的隐私权问题也有待解决。
人类基因组计划。人类基因组测序掀起了新一轮竞争高潮。PerkinElmer与J.CraigVenter组成了一个新的基因组公司,计划在3年内完成人类全基因组测序。国立人类基因组研究所则于1998年9月宣布,为庆祝DNA双螺旋结构发现50周年,将于2003年底前完成人基因组全DNA顺序的测定。几乎同时,属于Incyte制药公司的IncyteGenetics宣布将在1年内完成人全基因组图谱并建立含所有基因单核苷酸多态性数据的基因组顺序库。
中国生物医学市场现状及前景:
中国生物制药的研究和开发起步于上世纪70年代,到了90年代已有许多产品步入产业化并陆续上市,据不完全统计,我国已有近16个产品投入市场,有20多种基因工程药物处于开发阶段。1996年我国生物技术药品产值约为18亿元,实现利润5亿元,到1997年底上市的基因工程药物有12种,年产值达30亿元,2000年产值则达到69亿元,2003年达到99亿元。有关专家预测,未来的若干年内,生物制药产业年平均增长率不会低于12%,发展前景广阔。
企业规模小,市场相对容量小,厂家众多,产品重复,是我国生物制药企业的特点。现在国内有200多家生物技术工程制药企业。目前在沪深股市中,涉足生物制药产业的上市公司共有67家,总销售额超过1亿元的不超过4家,过千万元的也只有十多家。全国基因工程药物总销售额不及美国甚至日本一家中等公司的年产值。从企业自身研发投入上看,多数跨国公司开发费都占其销售收入的10%以上,有的甚至高达30%。从筹资规模上看,欧美国家的风险投资机制较为完善,外国公司实行资本化运营,筹资能力较强。截至1997年,美国对生物技术的投资已超过500亿美元,而且还在以每年追加50亿美元的速率促进生物技术的发展,而我国总投入只在60亿元人民币左右,还不及国外大公司一个基因药物_年的销售收人。另外,无论是在销售网络的建设、运行机制和效率,还是在市场渠道的开发经验方面,国内制药企业都与国外公司存在较大差距。
但是,我们也应该看到,近几年国内部分制药企业已加大投入,具有独立研发能力。尽管我国生物制药业起步较晚,但起点相对较高,关键性设备均从国外引进,特别是在上游、中试方面与国外差距较小,这些为我国生物制药企业提供了可利用的客观条件。
国内企业面临的挑战与出路
(一)强势和机会
以现代生物技术为主的生物制药是21世纪最具发展潜力的产业,我国生物制药经过20世纪90年代的发展已初步具备产业规模。近年来,国家高度重视生物技术的发展并出台相应的政策,给我国生物医药的发展带来了活力和机遇。去年发生的SARS疫情也促进了我国对生物医药产业的投入,给生物医药行业的发展带来机遇。目前相关企业正在加紧研发对病毒感染有效的干扰素新剂型,给因为价格战而蒙上阴影的生物技术板块带来一些新的希望。
(二)弱势和挑战
我国生物制药产业虽然发展较快,但也存在严重的问题,如资金投入少,研制开发力量薄弱,技术创新落后;在药品开发与生产上重复建设现象严重;力量分散,企业规模小,整体生产现代化水平不高,设备落后;市场开发理念失常,缺乏品牌意识;企业管理相对滞后,技术兼经营性人才匮乏;企业相互之间缺乏交流和合作。
目前,全世界排行前十位的制药公司已全部进入中国市场,排名前25位的制药企业中有15家在中国设有办事处机构。这些企业在中国加入WTO后,从政策上可能获得“准国民待遇”,对我国生物制药行业造成冲击。
(1)进口药品。从进口关税看,目前药品制剂的进口关税为20%。加入WTO后,10年内将降低到6.5%的水平,国内生物制药企业将逐渐失去靠关税政策保护的竞争力。
(2)外资企业的直接进人。国外生物制药企业在国内独资或合资建厂明显增多。他们依靠资金和技术优势,对我国正在发展的生物制药业产生了巨大的冲击。
(3)国外的新药开发。由于我国新药研制投入的严重不足,导致新产品的研制缺乏竞争力,新药开发进展缓慢。同样研制一种新药,一旦国外竞争对手抢先申报药品专利权,就会使国内企业的前期开发投资落空。
(4)国外公司市场开发的优势。国外许多大公司在新产品进入市场头几年都以巨额投资培育市场,并且可以在长时间不盈利的情况下继续生存,这是中国公司无法相比的。
(5)知识产权纠纷。由于我国大多数生物药品为仿制品,加入WTO后存在两个方面的问题:一是产品出口受限;二是仿制专利产品的做法将会受到限制。
㈢ 纳斯达克100指数基金,具体涵盖哪100只股票
1、全球最大半导体设备公司-阿斯麦控股ASML Holding NV (US)
2、游戏开发龙头-动视暴雪(暴雪娱乐)Activision Blizzard Inc
3、跨国电脑软件公司-奥多比软件公司Adobe Systems Inc
4、美国超微半导体公司-超微半导体设备 Advanced Micro Devices Inc(高级微设备公司)
5、生物制药公司-亚历克森制药Alexion Pharmaceuticals Inc
6、牙科医疗设备-艾利科技Align Technology Inc
7、美国科技龙头Google的母公司Alphabet(A)公司Alphabet Inc - A
8、美国科技龙头Google的母公司Alphabet(C)公司Alphabet Inc - C
9、全球电子商务及科技巨头-亚马逊Amazon.com Inc 全球最大电子商务公司+美国科技龙头
10、美国航空集团(美航)American Airlines Group Inc
11、美国生物科技龙头股-安进公司Amgen Inc
12、全球最大音频放大器公司-亚德诺半导体技术Analog Devices Inc
13、美国科技龙头、消费电子产品-苹果公司:Apple Inc(AAPL)118
14、全球最大半导体设备商-应用材料公司Applied Materials Inc
15、软件龙头-欧特克Autodesk Inc
16、人力资源外包服务-自动数据处理公司(ADP)Automatic Data Processing Inc
17、中概股:中国搜索龙头-网络Bai Inc - ADR
18、拜玛林制药[BMRN]BioMarin Pharmaceutical Inc
19、生物技术公司-百健艾迪Biogen Idec Inc
20、全球最大在线旅游服务商-缤客网Booking Holdings Inc
21、半导体设备的供应商-博通公司Broadcom Inc
22、铁路运输服务-CSX运输公司CSX Corp
23、全球最大电子设计自动化软件公司-卡得斯设计Cadence Design Systems Inc
24、生物制药龙头-新基医药/赛尔基因 Celgene Corp
25、医疗信息技术供货商-塞纳公司Cerner Corp
26、美国第二大有线电视&宽带提供商-特许通信公司Charter Communications Inc
27、网络安全公司-捷邦软件技术Check Point Software Technologies Ltd
28、全球知名服装租赁商-辛塔斯Cintas Corp
29、互联网解决方案龙头、电子--思科公司Cisco Systems Inc(CSCO)
30、软件及解决方案公司-思杰系统Citrix Systems Inc
31、世界级的IT服务供应商-高知特信息技术Cognizant Technology Solutions Corp
32、全美最大有线电视&第二大互联网服务提供商-康卡斯特电信Comcast Corp - Class A
33、美国最大会员制仓储式量贩店-好市多量贩Costco Wholesale Corp
34、中国最大的在线旅游公司-携程国际Ctrip.com International Ltd – ADR
35、美国折扣零售巨头-美元树公司Dollar Tree Inc
36、全球第二大游戏开发商-艺电有限公司Electronic Arts Inc
37、全球知名在线旅游网-亿客行Expedia Group Inc
38、全球最大的社交网络-脸书Facebook Inc
39、螺纹紧固件公司-法思诺贸易Fastenal Co
40、金融服务解决方案公司-费哲金融服务公司Fiserv Inc
41、美国生物科技龙头-吉利德科学公司Gilead Sciences Inc
42、世界第二大玩具公司-孩之宝公司Hasbro Inc
43、美国最大牙医器材商-亨利香恩服务/汉瑞祥Henry Schein Inc
44、动物健康&水和牛奶质量检测-爱德士生物科技IDEXX Laboratories Inc
45、世界第二的分子诊断公司-亿明达Illumina Inc
46、艾滋病&抗癌药公司-因塞特医疗Incyte Corp Ltd
47、全球最大半导体芯片制造商、微处理器-英特尔公司Intel Corp
48、美国最大理财软件公司-财捷/直觉软件公司Intuit Inc
49、财捷/直觉软件公司-达芬奇手术机器人 Intuitive Surgical Inc
50、汽车运输公司-JB亨
㈣ 美国"人类基因组计划"
什么是人类基因组计划
什么是人类基因组计划
现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。
人类只有一个基因组,大约有5-10万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计划的目标是,为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷。虽然很慢,但非常精确。
随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状况将会提高,二十一世纪的医学基础将由此奠定。
利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级作物。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程。
人类基因组计划带来了什么?
从人类社会诞生以来,人类就没有停止过对自身的思考。人类在探索,认识世界的过程中也不断地提高对人类自身的认识。古代的医学发现,近代的遗传学说,进化论的确立,为人类更完全地认识自己奠定了坚实的基矗随着人类在其他科技方面取得的巨大成功,生命科学的研究也越来越深入到了生命的根本奥秘中。
人类的遗传信息以核苷酸顺序的形式贮存在DNA分子中,它们以功能单位在染色体上占据一定的位置,构成基因。基因组就是细胞内遗传信息的携带者——DNA的总体。基因组中不同的区域具有不同的功能,有些是编码蛋白质的结构基因,有些是复制及转录的调控信号,有些区域的功能尚不清楚。基因组结构是指不同功能区域在整个DNA分子中的分布情况。人类基因组包含着决定人类生、老、并死以及精神、行为等活动的全部遗传信息。所以搞清楚核苷酸顺序无疑将对人类最终完全解开遗传之谜提供最直接的帮助。
1986年,著名生物学家、诺贝尔奖获得者雷纳托杜尔贝科(Renato Dulbecco)在Science杂志上率先提出“人类基因组计划”(Human Genomic Project,简称HGP)。1990年10月,美国政府决定出资30亿美元正式启动“人类基因组计划”,预期到2005年拿到人体的全部基因序列(共约30亿个碱基对全序列);随后研究其相互作用和基因功能,从而揭开人类全部遗传信息之谜,使人类对自身的认识达到一个新的高度。人类基因组计划可以说是人类有史以来最为伟大的认识自身的世纪工程。此项计划的实现,将对全人类的健康,生命的繁衍产生无止境的影响。按照设想,碱基对测序完毕之后,科学家将分析碱基如何组成基因以及各种基因有什么功用等。弄清全部基因的位置、结构和功能,将为人类征服多种疑难病症铺平道路。
“人类基因组计划”启动以后,欧洲、日本、前苏联、巴西、印度、中国迅速跟进,纷纷加入到此项意义重大的研究中。我国于1999年7月在国际人类基因组注册,得到完成人类3号染色体短臂上一个约30Mb区域的测序任务。该区域约占人类整个基因组的1%,简称“1%项目”。这标志着我国已掌握生命科学领域中最前沿的大片段基因组测序技术,在开发和利用宝贵的基因资源上已处于与世界发达国家同步的地位,在结构基因组学中占了一席之地。
那么“人类基因组计划”到底为什么具有如此大的魅力?吸引了如此多的国家和众多的生物科学家参加到其中的研究?其实,对人类基因组的研究不仅仅地是一项科学研究,它很可能暗含着将是21世纪最大的商机。
基因是生物制药产业的源头、生长点和制高点,源于基因的技术拓展将是21世纪制药企业开发新品的基矗目前,世界上各大制药、化工和农业公司都在积极地进行改组、合并和建立新联盟,以通过基因相关的研究和开发加强自己的竞争实力。尽管基因产业所需的投资数目非常大,探索工作也非常艰辛(比如分离囊性纤维病变基因花了十年时间,耗资1.5亿美元以上),但一旦拿到一个能够编码重要功能蛋白的基因后,其回报将是无比丰厚的——发现者可以获取该基因的专利,科研人员可以之进行相关研究并设计相关的防治药物,医药公司可在专利期满之前获取市场巨额垄断利润。可以说,一个基因可以成就一家企业,甚至带动一个产业。所以,对科学家来说,“人类基因组计划”给他们带来的是对人类自身认识的一次重大飞跃,是人类战胜疾病的希望;而对于不惜血本投入大量资金让科学家研究基因组的政府和企业,更多的看到的是研究成功后所带来的市场垄断和超巨额利润。
于是,一场没有硝烟但关系非同寻常的“基因战”早以打响。国家与国家之间,官方研究项目与私营机构之间都存在着异常激烈的竞争。今年5月24日,代表官方参与“人类基因组工程”的科学家宣布,将于6月15日公布首幅人类遗传密码“工作草图”。同时,美国赛里拉(Celera)遗传公司也透露,将在6月份发布自己的“工作草图”。这意味着,破译人类遗传密码的竞赛已进入最后冲刺阶段,决定人类生、老、并死以及精神、行为等活动的全部遗传信息的奥秘即将被人类自己揭开,巨大的商机也开始向基因组研究的投资者招手。
人类基因组计划被认为是人类最伟大的认识自身的科学探索之一,其意义甚至超过阿波罗登月计划,我们人类开始揭示隐藏在自身的奥秘,我们的生命和行为即将因为它而改变,它所带来的是一场生命的革命,同时,它将以前所未有的力量冲击人类的道德、伦理观念。
掌握了自身基因组奥秘的人类将不再畏惧过去闻之色变的各种“癌”,我们可以改变与生即来的某些缺陷,我们甚至可以实现永葆青春。但是,我们又不得不担心,因为和掌握核能力一样,基因能给我们带来福音,也能给我们带来可怕的负面影响-----重组基因可以改变人类固有的特征。
二战时期,希特勒就曾经组织大量科学家研究如何“制造”出最优秀的纯种雅利安人,可当时的科学没有达到那一步的能力,但是,很可能就是20年后,这种想法完全可能实现。我们不但可以复制某个人,我们还能象工厂生产玩具一样批量“生产”按顾客需要设计的,合乎数据规定的“人造人”!
前一段时间克隆生物的出现就引起了各方面的担心和忧虑,如果“人造人”
真的出现了,我们该怎么办呢?我们的下一代还能是自然的人吗?我们固有的伦理、道德还能适用于我们将来的社会吗?
“人类基因组计划”的由来与发展(一)
人类基因组计划这么一个划时代的项目,是一个人提出的吗?不是。这一计划的孕育,经历了长达5年的时间,这五年里,在发达国家里,上致政府首要,下至平民百姓,都参与了这一场讨论与最后的决策。而各国,首先是美国的科学家,作了大量的论证。各个学科持各种不同观点的科学家各抒己见,充分体现了科学讨论的平等与决策的民主。尽管几度迷离,几度彷徨,几度反复,但最后,人类还是选择了“人类基因组计划”。人类基因组计划的形成,从历史上来说,有好几条思路。
七十年代的人类疾病的“基因论”之说,无疑是人类基因组计划的主要思路。不仅疾病与基因有关,人类的生存、出生、生长都与基因有关,都与DNA的序列有关。正如著名的诺贝尔奖获得者,意大利的杜伯克在他发表的一篇文章,后来被称为“人类基因组计划”的“标书”之中写的:人类的DNA序列是人类的真谛。这个世界上的发生的一切,都与之息息相关。在策略上说,“人类基因组计划”所采取的策略是“基因组学”这门科学的策略,正如基因是研究基因的科学一样,顾名思义,“基因组学”就是研究基因组的科学。正如杜伯克说的:既然大家都知道基因的重要性,那我们就只有两种选择,一是“零敲碎打”,大家都去“个体作业”,去研究自己“喜欢”的、认为是重要的基因,而另一种选择呢?则是前所未有的大胆说法:从整体上来搞清楚人类的整个基因组,集中力量先认识人类的所有基因。
因为人类基因组计划的雄心太大、规模太大,要花的钱太多,因此政府部门、科学家、社会大众,都有不少不赞成的意见。首先是这个计划的必要性的问题,他们认为把纳税人的30亿美元用来搞人的庞大无比的基因组序列,纯粹是拿纳税人的钱开玩笑!其次是这个计划的现实性,他们认为到2005年完成这个计划是“吹牛”。说实在的,在那时能否如期完成,谁也心里无底。那时候,连现在的现代化的测序仪器的影子都还没有。其三是科学研究领域的选择问题,有点象“要为不可为”的想象:人类自然科学要研究的问题很多,为什么要上这样的计划?这笔钱也得花到别的地方也许更值得、更实际,有人还担心“大科学”会影响小科学,“大中心”会危及小实验室的生存。说的话也很难听,如批评这个计划是“过于偏激、过于集中,目标过多、预算过大”。而得到的东西,只不过是“一张部件名单”。而对于这个计划的具体项目,则更加刻薄,如“制图”是在沙漠里建公路,“测序”是把“垃圾”分类,选择“模式动物”是拼凑“诺亚方舟”。最后,认为基因组计划建立的新的技术,是“不用现在的Saturn火箭”,而要追求奢侈、舒适的新航天飞机”,因为分离基因已有不少别的方法。
1990年美国刚开始“人类基因组计划”,好多科学家还联名写信表示反对,结果原来的预算还被砍了3400万美元,原计划建的9个中心,每个中心年经费400万美元。被砍了只剩下3个,而每个中心的经费只有200万美元!主要的批评之一,还是不要搞人的基因组计划,这太多啦,应该先搞小的,如细菌等,或者是经济意义大的,象小麦、猪、羊啊。他们讥笑这一研究人的基因组计划是“泥足巨人(clay-footed gaint)”。还预测将象75年开始的肿瘤计划一样“流产”。真理有它本身的真理性,可行性。真理不怕辩论,这就是它的“说服性”。“人类基因组计划”是有道理的,但是对真理的认识有它的过程,真理本身的完善也有它的过程。“人类基因组计划”正是不断地从批评中吸取正确的意见,逐渐完善到今天这一计划的。如开始仅是笼统的“测序分析计划”。从何入手呢?各有各的说法。“制图计划”特别是遗传图的构建,原先是作为“测序”计划的不同意见提出来的,但双方都没有简单否定对方的意见,有关决策部门也没有简单地支持一方面压制另一方,而最后持不同意见的双方走到一起,共同制定更加科学、更加全面的计划。“cDNA计划”就是把一个基因中一小部分与蛋白质有关的序列先搞清楚的计划,也是作为“全基因组计划”的一种反对意见提出来,但也没有被主流意见所拒绝,没有因此而摒弃“全基因组计划”,而是作为“基因图”的雏型而纳入整个基因组计划,而且成为重要部分之一,即我们要做的“转录图”。“基因鉴定”计划也是作为不同意见提出来的,认为最重要的是那些与人类疾病有关的基因,后来成为最能反映“人类基因组计划”的成果的“热点”。而“模式生物”计划选择了酵母、线虫、果蝇、小鼠作为研究人类的四大“模式生物”,其科学意义十分重要。整个讨论的过程,逐渐形成了“人类基因组计划精神”的一部分。
除了上述的“兼容并蓄”外,其次是“精诚合作”,人类基因组计划是人类历史上第一次由全世界各国不分大小、不分强弱,所有科学家一起执行的科研项目。实施人类基因组计划伊始,发达国家具有远见的科学家即号召全球各个国家的政府都重视这一项目,并号召全世界科学家共同参与,建议所有的进展、所有的数据、所有的实验资源应随时公布于众,让全世界所有国家免费享用。在实施过程中,各国科学家精诚合作、共享材料、共享数据、共同攻关。这在人类自然科学史上,还是史无前例的。人类基因组计划与另两个有全球性意义的项目,即曼哈顿原子弹计划和阿波罗登月基因相比,更显示了人类的谐同与进步。其三就是对社会“高度负责”的精神。人类基因组计划在启动伊始,便重视这一计划可能对社会、法律、伦理方面的冲击,特别注重这一方面的研究,并形成主流意见。特别是HUGO(国际人类基因组组织)的几个重要声明,充分体现了现代自然科学的“求真”、“求善”及对社会的高度责任感。我们应该颂扬这一“人类基因组计划精神”,使它成为各国、各领域的合作楷模。
“人类基因组计划”的由来与发展(三)
真理只能成功不许失败,我们不能让真理在自称拥有真理的人手里哭泣!尽管真理哭泣过千百次。一个计划,所有的指标就得完成,否则就得宣告失败,或者早已流产。人类基因组基因的目标,讨论来讨论去,数易其稿,对每一部分都有具体目标,定质、定量、定时完成。真理还要有说服性。美国的这一计划的通过与被民众接受,科学家做了大量工作,又要到国会去“游说”。有人说“人类基因组计划”是美国历史上规模最大、参与人数最多、也最为成功的“游说”!说服政治家也不容易啊!要把科学意义与社会意义,经济意义结合起来,把现实的利益与长远利益结合起来,还要一一比较各种不同的意见与方案。还要通过各种关系、渠道把工作做到家。对照他们的工作,我们可以说:假设我们中国的决策者对“人类基因组计划”不予重视,我们科学家也有责任!除了科学家自己的讨论外,主流科学家对民众做了不少工作,后来美国政府也做了不少工作。美国政府不能有自己的报纸、电台、电视台,只好印了很多小册子,有较浅显的,如“人类基因组计划有多大?多有价值?”。
也有很通俗的,如“了解我们的基因”这一小册子。使大家都明确基因的重要性,人类基因组计划的必要性,为什么要花这么多钱,这钱花得如何值得。而科学家呢?他们到处讲话,向通俗的语言,把基因说得活灵活现,把“人类基因组计划”说的浅显易懂。本文的很多说法,都是从他们那儿学来的。如搞清楚30亿对核苷酸,就好象搞清楚整个地球上的30亿对人各姓什么(假说天下只有四个姓氏!)人的基因组就象地球那么大,一个染色体就象一个国家那么大,一个基因就象我们所在这憧楼那么大,还有“制图”就象在高速公路上标上路标等等。“人类基因组计划”被民众接受的过程,确实是社会学家、伦理学家、科学家、民众的一场有关基因的科学普及过程。此外还有伦理学家的问题。这个问题可复杂啦!“人类基因组计划”所揭示的人类的最终奥秘,势必冲击社会、法律、伦理。
最后,民众还是大体接受了这一计划。首先,懂得了基因的重要性后,民众就产生了了解自我,了解基因的愿望。如果没有特殊的外界原因,我们的基因在出生以后变化就不大了。但我们要了解:(1)我们的基因在我们的家系传递的规律,特别是关系到“病与不病”的那些基因,照料好我们的后代。(2)我们要了解“病与不病”的原因。人类基因组计划能够坚持到今天,全靠全世界广大民众的支持。因为这是一项公益性的计划,关系到千家万户,千秋万代。
㈤ 专利转让一般多少钱专利转让案例分析
专利转让一般多少钱?专利转让案例分析发明专利转让天价也许并不是一件坏事 专利转让出天价的例子并不是天方夜谈,专利转让一般多少钱就可以让申请人过上富裕的生活?让我们来看看有那些令人咋舌的案例吧。恒瑞医药专利转让案例:2015年9月1日,江苏恒瑞医药股份有限公司(简称恒瑞医药)与美国Incyte Corp公司在美国达成协议,将具有自主知识产权的用于肿瘤免疫治疗的PD-1单克隆抗体(代号SHR1210)项目有偿许可给美国Incyte Corp公司。协议以首付款加上里程碑付款累计最高达7.95亿美元,销售提升另计。信达生物制药专利转让案例:美国礼来制药公司与信达生物制药(苏州)有限公司(简称信达生物制药)于日前宣布拓展双方在药物开发方面已有的合作,该合作也是中国生物制药企业与跨国药企之间最大的合作之一。本次合作涉及三个目前最有前景的新型双特异性肿瘤免疫治疗抗体,三个抗体均使用来自于信达生物制药自主研发的PD-1单抗。根据合作协议,信达生物制药和美国礼来制药公司将合作开发、生产和销售以上新药,其中信达生物制药将合作主导中国市场的开发、生产和销售,美国礼来制药公司将合作主导国外市场的开发、生产和销售。基于这次新的合作,信达生物制药将获得美国礼来制药公司总额超过10亿美元的里程碑付款;如果以上抗体在国外商业化,信达生物制药还将收到额外的销售提成和其他付款。个人专利转让案例:重庆科技学院一名研究生研发的国内首台低成本3D打印抛光机,通过中央电视台科教频道《发明梦工厂》栏目竞拍,获200万元人民币专利转让费。上海生科院专利转让案例:2010年,上海生命科学院(简称上海生科院)将一项蛋白质抗肿瘤药物发明的美国和欧洲市场的专利权许可给了跨国医药企业赛诺菲-安万特公司,许可合同金额高达6000多万美元,销售收入提成另计。
㈥ 基因芯片技术
“微处理器在本世纪使我们的经济结构发生了根本改变,给人类带来了巨大的财富,改变了我们的生活方式。然而,生物芯片给人类带来的影响可能会更大,它可能从根本上改变医学行为和我们的生活质量,从而改变世界的面貌 ”。
一、生物芯片与基因芯片
生物芯片技术是通过缩微技术,根据分子间特异性地相互作用的原理,将生命科学领域中不连续的分析过程集成于硅芯片或玻璃芯片表面的微型生物化学分析系统,以实现对细胞、蛋白质、基因及其它生物组分的准确、快速、大信息量的检测。按照芯片上固化的生物材料的不同,可以将生物芯片划分为基因芯片、蛋白质芯片、细胞芯片和组织芯片。生物芯片技术与传统的仪器检测方法相比具有高通量、微型化、自动化、成本低、防污染等特点。按照生物芯片的制作技术,可以将生物芯片划分为微矩阵和原位合成芯片。鉴于生物芯片技术领域的飞速发展,美国科学促进会将生物芯片评为1998年的十大科技突破之一,认为生物芯片技术将是继大规模集成电路之后的又一次具有深远意义的科学技术革命。
目前,最成功的生物芯片形式是以基因序列为分析对象的“微阵列(microarray)”,也被称为基因芯片(Gene chip)DNA芯片(DNA chip)。按照载体上点的DNA种类的不同,基因芯片可分为寡核苷酸和cDNA两种芯片。按照基因芯片的用途可分为表达谱芯片、诊断芯片、指纹图谱芯片、测序芯片、毒理芯片等等。早在八十年代初期,Bains等人就用杂交的方法对固定在支持物上的短DNA片段进行序列测定。基因芯片技术从实验阶段走向工业化是得益于其他技术的引入,如激光共聚焦显微技术、探针固相原位合成技术与照相平板印刷技术的结合和双色荧光探针杂交系统的建立。90年代初期人类基因组计划(Human Genome Project, HGP)和分子生物学相关学科的发展也为基因芯片技术的出现和发展提供了有利条件。1992年,Affymatrix公司Fodor领导的小组运用半导体照相平板技术,对原位合成制备的DNA芯片作了首次报道,这是世界上第一块基因芯片。1995年,Stanford大学的P.Brown实验室发明了第一块以玻璃为载体的基因微矩阵芯片。标志着基因芯片技术进入了广泛研究和应用的时期。
二、制备基因芯片的必要条件
1、靶基因 用于芯片点样的是靶基因。靶基因可分为染色体DNA(或基因组DNA)、cDNA(或人工合成DNA)。目前,以cDNA的研究为主,因为cDNA是染色体上编码蛋白质的DNA序列,有医疗和其他领域的研究价值和商业价值。
2、制备技术 基因芯片的制备综合了生命科学、化学染料、微电子技术、激光、统计学等领域的前沿技术,主要包括芯片的制备(选择点样仪和玻片、靶基因的扩增和固定)、杂交探针的制备(mRNA的抽提、mRNA的逆转录、PCR和探针荧光标记)、杂交条件的优化技术(杂交液、杂交条件和洗涤条件的选择)和数据分析技术。其中,基因芯片的制备主要依赖于微细加工(microfabrication)、自动化(automatism)及化学合成技术。通常比较典型的DNA芯片制备方法有3种:(1)原位合成法(in situ synthesis) 以Affymetrix公司开发的光引导原位合成法为代表(2)合成点样法 又根据是否与芯片的表面接触分为化学喷射法和接触式点涂法,分别以Incyte Pharmaceutical公司和Stanford大学为代表(3)压电法 通过使用4支分别装有A、T、G、C核苷的压电喷头在芯片上作原位DNA探针合成。
三、基因芯片技术简介
基因芯片技术主要包括四个主要步骤:芯片制备、样品制备、杂交反应和信号检测和结果分析。
1、芯片制备-目前制备芯片主要以玻璃片或硅片为载体,采用原位合成和微矩阵的方法将寡核苷酸片段或cDNA作为探针按顺序排列在载体上。芯片的制备除了用到微加工工艺外,还需要使用机器人技术。以便能快速、准确地将探针放置到芯片上的指定位置。
2、样品制备-生物样品往往是复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应,有时样品的量很小。所以,必须将样品进行提取、扩增,获取其中的蛋白质或DNA、RNA,然后用荧光标记,以提高检测的灵敏度和使用者的安全性。
3、杂交反应-杂交反应是荧光标记的样品与芯片上的探针进行的反应产生一系列信息的过程。选择合适的反应条件能使生物分子间反应处于最佳状况中,减少生物分子之间的错配率。
4、信号检测和结果分析-杂交反应后的芯片上各个反应点的荧光位置、荧光强弱经过芯片扫描仪和相关软件可以分析图像,将荧光转换成数据,即可以获得有关生物信息。 基因芯片技术发展的最终目标是将从样品制备、杂交反应到信号检测的整个分析过程集成化以获得微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。使用缩微芯片实验室,就可以在一个封闭的系统内以很短的时间完成从原始样品到获取所需分析结果的全套操作。
四、基因芯片的应用及其商业价值
目前,基因芯片技术应用领域主要有基因表达谱分析、新基因发现、基因突变及多态性分析、基因组文库作图、疾病诊断和预测、药物筛选、基因测序等。另外基因芯片在农业、食品监督、环境保护、司法鉴定等方面都将作出重大贡献。 基因芯片的飞速发展引起世界各国的广泛关注和重视。
鉴于基因芯片的巨大潜力和诱人的前景,基因芯片已成为各国学术界和工业界研究和开发的热点。尤其在美国,正处于人类基因组计划以来的第二次浪潮之中,美国总统克林顿在1998年1月的国情咨文中指出:“在未来的12年内,基因芯片将为我们一生的疾病预防指点迷津”。1998年6月29日美国宣布正式启动基因芯片计划,联合私人投资机构投入了20亿美元以上的研究经费。世界各国也开始加大投入,以基因芯片为核心的相关产业正在全球崛起,目前美国已有8家生物芯片公司股票上市,平均每年股票上涨75%,专家今统计:全球目前生物芯片工业产值为10亿美元左右,预计今后5年之内,生物芯片的市场销售可达到200亿美元以上。美国财富杂志载文:在20世纪科技史上有两件事影响深远,一是微电子芯片,它是计算机和许多家电的心脏,它改变了我们的经济和文化生活,并已进入每一个家庭;另一件事就是生物芯片它将改变生命科学的研究方式,革新医学诊断和治疗,极大地提高人口素质和健康水平。鉴于生物芯片技术具有巨大理论意义和实际价值,基因芯片研究在国内也有了很快的发展,例如,复旦大学、中科院上海冶金所、清华大学、联合基因有限公司、军事医学科学院、中科院上海细胞所等单位已在生物芯片技术方面取得了较大突破,相信不久将有我国生产的生物芯片产品投放市场。
总之,以基因芯片为代表的生物芯片技术的深入研究和广泛应用,将对21世纪人类生活和健康产生极其深远的影响。
㈦ 美国incyte股票行情查询
你的德生是音响吗?如果是音响就可以加装蓝牙功能的。我把我加装蓝牙功能的方法分享给你,可以参考。方法如下:首先去某宝花十几块钱买一块蓝牙板子,然后用棒棒胶,将蓝牙板子和控制电源的微动开关(旧电动玩具上就有)沾在一起,如图: 再淘一条3.5转莲花插头音频线如图: 由蓝牙板子上的耳机音频输出插口,用音频线连接到功放机的音频输入端就可以了。蓝牙板子与手机蓝牙功能连接就好了。
㈧ 苏教版高中语文课文《人类基因组计划及其意义》、《南州六月荔枝丹》、《斑纹》全文
、人类基因组测序
1990年~1998年,人类基因组序列已完成和正在测序的共计约330Mb,占人基因组的11%左右;已识别出人类疾病相关的基因200个左右。此外,细菌、古细菌、支原体和酵母等17种生物的全基因组的测序已经完成。
值得一提的是,企业与研究部门的携手,将大大地促进测序工作的完成。美国的基因组研究所(The Institute of Genome Research, TIGR)与PE(Perkin-Elmar)公司合作建立新公司,三年内投资2亿美元,预计于2002年完成全序列的测定。这一进度将比美国政府资助的HGP的预定目标提前三年。美国加州的一家遗传学数据公司(Incyte)宣布(1998年〕,两年内测定基因组中的蛋白质编码序列以及密码子中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。
1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国政府资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。2003年完成基因组测序,差错率为万分之一。这一时间表显示,计划将比开始的目标提前两年完成。
2、疾病基因的定位克隆
人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。
在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。
3、多基因病的研究
目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。
4、中国的人类基因组研究
国际HGP 研究的飞速发展和日趋激烈的基因抢夺战已引起了中国政府和科学界的高度重视。在政府的资助和一批高水平的生命科学家带领下,我国已建成了一批实力较强的国家级生命科学重点实验室,组建了北京、上海人类基因组研究中心。有了研究人类基因组的条件和基础,并引进和建立了一批基因组研究中的新技术。中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。
首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA文库和24种染色体区特异性DNA文库及其探针;构建了人X染色体YAC图谱,已完成了人X染色体Xp11.2-p21.3跨度的约35cM STS-YAC图谱的构建;建立了YAC-cDNA筛选技术。
目前的研究工作还包括: 疾病和功能相关新基因的分离、测序和克隆的技术和方法学的创新研究;中国少数民族HLA分型研究及特种基因的分析; 人胎脑cDNA文库的构建和新基因的克隆研究。
中国是世界上人口最多的国家,有56 个民族和极为丰富的病种资源,并且由于长期的社会封闭,在一些地区形成了极为难得的族群和遗传隔离群,一些多世代、多个体的大家系具有典型的遗传性状,这些都是克隆相关基因的宝贵材料。但是,由于我国的HGP 研究工作起步较晚、底子薄、资金投入不足,缺乏一支稳定的、高素质的青年生力军, 我国的HGP 研究工作与国外近年来的惊人发展速度相比,差距还很大,并且有进一步加大的危险。如果我们在这场基因争夺战中不能坚守住自己的阵地,那么在21 世纪的竞争中我们又将处于被动地位:我们不能自由地应用基因诊断和基因治疗的权力,我们不能自由地进行生物药物的生产和开发,我们亦不能自由地推动其他基因相关产业的发展。
二、展望
1、生命科学工业的形成
由于基因组研究与制药、生物技术、农业、食品、化学、化妆品、环境、能源和计算机等工业部门密切相关,更重要的是基因组的研究可以转化为巨大的生产力,国际上一批大型制药公司和化学工业公司大规模纷纷投巨资进军基因组研究领域,形成了一个新的产业部门,即生命科学工业。
世界上一些大的制药集团纷纷投资建立基因组研究所。Ciba-Geigy 和Ssandoz合资组建了Novartis 公司,并斥资2.5亿美元建立研究所,开展基因组研究工作。Smith Kline 公司花1.25亿美元加快测序的进度,将药物开发项目的25%建立在基因组学之上。Glaxo-Wellcome 在基因组研究领域投入4,700万美元,将研究人员增加了一倍。
大型化学工业公司向生命科学工业转轨。孟山都公司早在1985年就开始转向生命科学工业。至1997年,该公司向生物技术和基因组研究的投入已高达66亿美元。1998年4月,杜邦公司宣布改组成三个实业单位,由生命科学领头。1998年5月,该公司又宣布放弃能源公司Conaco,将其改造成一家生命科学公司。Dow化学公司用9亿美元购入Eli Lilly公司40%的股票,从事谷物和食品研究,后又成立了生命科学公司。Hoechst公司则出售了它的基本化学品部门,转项投资生物技术和制药。
传统的农业和食品部门也出现了向生物技术和制药合并的趋势。Genzyme Transgenics 公司培养出的基因工程羊能以较高的产量生产抗凝血酶III,一群羊的酶产量相当于投资1.15亿美元工厂的产量。据估计,转基因动物生产的药物成本是大规模细胞培养法的十分之一。一些公司还在研究生产能抗骨质疏松的谷物,以及大规模生产和加工基因工程食品。
能源、采矿和环境工业也已在分子水平上向基因组研究汇合。例如,用产甲烷菌Methanobacterium 作为一种新能源。用抗辐射的细菌Deinococcus radiorans清除放射性物质的污染,并在转入tod基因后,在高辐射环境下清除多种有害化学物质的污染。
2、功能基因组学
人类基因组计划当前的整体发展趋势是什么?一方面,在顺利实现遗传图和物理图的制作后,结构基因组学正在向完成染色体的完整核酸序列图的目标奋进。另一方面,功能基因组学已提上议事日程。人类基因组计划已开始进入由结构基因组学向功能基因组学过渡、转化的过程。在功能基因组学研究中,可能的核心问题有:基因组的表达及其调控、基因组的多样性、模式生物体基因组研究等。
(1)基因组的表达及其调控
1)基因转录表达谱及其调控的研究
一个细胞的基因转录表达水平能够精确而特异地反映其类型、发育阶段以及反应状态,是功能基因组学的主要内容之一。为了能够全面地评价全部基因的表达,需要建立全新的工具系统,其定量敏感性水平应达到小于1个拷贝/细胞,定性敏感性应能够区分剪接方式,还须达到检测单细胞的能力。近年来发展的DNA微阵列技术,如DNA芯片,已有可能达到这一目标。
研究基因转录表达不仅是为了获得全基因组表达的数据,以作为数学聚类分析。关键问题是要解析控制整个发育过程或反应通路的基因表达网络的机制。网络概念对于生理和病理条件下的基因表达调控都是十分重要的。一方面,大多数细胞中基因的产物都是与其它基因的产物互相作用的;另一方面,在发育过程中大多数的基因产物都是在多个时间和空间表达并发挥其功能,形成基因表达的多效性。在一个意义上,每个基因的表达模式只有放到它所在的调控网络的大背景下,才会有真正的意义。进行这方面的研究,有必要建立高通量的小鼠胚胎原位杂交技术。
2)蛋白质组学研究
蛋白质组学研究是要从整体水平上研究蛋白质的水平和修饰状态。目前正在发展标准化和自动化的二维蛋白质凝胶电泳的工作体系。首先用一个自动系统来提取人类细胞的蛋白质,继而用色谱仪进行部分分离,将每区段中的蛋白质裂解,再用质谱仪分析,并在蛋白质数据库中通过特征分析来认识产生的多肽。
蛋白质组研究的另一个重要内容是建立蛋白质相互关系的目录。生物大分子之间的相互作用构成了生命活动的基础。组装基因组各成分间的详尽作图已在T7噬菌体(55个基因)获得成功。如何在模式生物(如酵母)和人类基因组的研究中建立自动方法,认识不同的生化通路,是值得探讨的问题。
3)生物信息学的应用
目前,生物信息学已大量应用于基因的发现和预测。然而,利用生物信息学去发现基因的蛋白质产物的功能更为重要。模式生物体中越来越多的蛋白质构建编码单位被识别,无疑为基因和蛋白质同源关系的搜寻和家族的分类提供了极其宝贵的信息。同时,生物信息学的算法、程序也在不断改善,使得不仅能够从一级结构,也能从估计结构上发现同源关系。但是,利用计算机模拟所获得的理论数据,还需要经过实验经过的验证和修正。
(2)基因组多样性的研究
人类是一个具有多态性的群体。不同群体和个体在生物学性状以及在对疾病的易感性与抗性上的差别,反映了进化过程中基因组与内、外部环境相互作用的结果。开展人类基因组多样性的系统研究,无论对于了解人类的起源和进化,还是对于生物医学均会产生重大的影响。
1)对人类DNA的再测序
可以预测,在完成第一个人类基因组测序后,必然会出现对各人种、群体进行再测序和精细基因分型的热潮。这些资料与人类学、语言学的资料项结合,将有可能建立一个全人类的数据库资源,从而更好地了解人类的历史和自身特征。另外,基因组多样性的研究将成为疾病基因组学的主要内容之一,而群体遗传学将日益成为生物医药研究中的主流工具。需要对各种常见多因素疾病(如高血压、糖尿病和精神分裂症等)的相关基因及癌肿相关基因在基因组水平进行大规模的再测序,以识别其变异序列。
2)对其它生物的测序
对进化过程各个阶段的生物进行系统的比较DNA测序,将揭开生命35亿年的进化史。这样的研究不仅能勾画出一张详尽的系统进化树,而且将显示进化过程中最主要的变化所发生的时间及特点,比如新基因的出现和全基因组的复制。
认识不同生物中基因序列的保守性,将能够使我们有效地认识约束基因及其产物的功能性的因素。对序列差异性的研究则有助于认识产生大自然多样性的基础。在不同生物体之间建立序列变异与基因表达的时空差异之间的相关性,将有助于揭示基因的网络结构。
(3)开展对模式生物体的研究
1)比较基因组研究
在人类基因组的研究中,模式生物体的研究占有极其重要的地位。尽管模式生物体的基因组的结构相对简单,但是它们的核心细胞过程和生化通路在很大程度上是保守的。这项研究的意义是:1〕有助于发展和检验新的相关技术,如大规模测序、大规模表达谱检验、大规模功能筛选等;2〕通过比较和鉴定,能够了解基因组的进化,从而加速对人类基因组结构和功能的了解;3〕模式生物体间的比较研究,为阐明基因表达机制提供了重要的线索。
目前对于基因组总体结构组成方面的知识,主要来源于模式生物体的基因组序列分析。通过对不同物种间基因调控序列的计算机分析,已发现了一定比例的保守性核心调控序列。根据这些序列建立的表达模式数据库对破译基因调控网络提供了必要的条件。
2)功能缺失突变的研究
识别基因功能最有效的方法,可能是观察基因表达被阻断后在细胞和整体所产生的表型变化。在这方面,基因剔除方法(knock-out)是一项特别有用的工具。目前。国际上已开展了对酵母、线虫和果蝇的大规模功能基因组学研究,其中进展最快的是酵母。欧共体为此专门建立了一个称为EUROFAN(European Functional Analysis Network)的研究网络。美国、加拿大和日本也启动了类似的计划。
随着线虫和果蝇基因组测序的完成,将来也可能开展对这两种生物的类似性研究。一些突变株系和技术体系建立后,不仅能够成为研究单基因功能的有效手段,而且为研究基因冗余性和基因间的相互作用等深层次问题奠定了基础。小鼠作为哺乳动物中的代表性模式生物,在功能基因组学的研究中展有特殊的地位。同源重组技术可以破坏小鼠的任何一个基因,这种方法的缺点是费用高。利用点突变、缺失突变和插入突变造成的随机突变是另一中可能的途径。对于人体细胞而言,建立反义寡核苷酸和核酶瞬间阻断基因表达的体系可能更加合适。蛋白质水平的剔除术也许是说明基因功能最有力的手段。利用组合化学方法有望生产出化学剔除试剂,用于激活或失活各种蛋白质。
总之,模式生物体的基因组计划为人类基因组的研究提供了大量的信息。今后,模式生物体的研究方向是将人类基因组8~10万个编码基因的大部分转化为已知生化功能的多成分核心机制。而要获得酶一种人类进化保守性核心机制的精细途径,以及它们的紊乱导致疾病的各种途径的知识,将只能来自对人类自身的研究。
通过功能基因组学的研究,人类最终将将能够了解哪些进化机制已经确实发生,并考虑进化过程还能够有哪些新的潜能。一种新的解答发育问题的方法可能是,将蛋白质功能域和调控顺序进行重新的组合,建立新的基因网络和形态发生通路。也就是说,未来的生物科学不仅能够认识生物体是如何构成和进化的,而且更为诱人的是产生构建新的生物体的可能潜力 .
《南州六月荔枝丹》贾祖璋 课文原文
南州六月荔枝丹
·贾祖璋·
幼年时只知道荔枝干的壳和肉都是棕褐色的。上了小学。老师讲授白居易的《荔枝图序》,读到
㈨ 3243点突变的比例有什么意义
■人类基因组计划的研究现状与展望------发表日期:2004年3月30日一、研究现状1、人类基因组测序1990年~1998年,人类基因组序列已完成和正在测序的共计约330Mb,占人基因组的11%左右;已识别出人类疾病相关的基因200个左右。此外,细菌、古细菌、支原体和酵母等17种生物的全基因组的测序已经完成。值得一提的是,企业与研究部门的携手,将大大地促进测序工作的完成。美国的基因组研究所(The Institute of Genome Research, TIGR)与PE(Perkin-Elmar)公司合作建立新公司,三年内投资2亿美元,预计于2002年完成全序列的测定。这一进度将比美国政府资助的HGP的预定目标提前三年。美国加州的一家遗传学数据公司(Incyte)宣布(1998年〕,两年内测定基因组中的蛋白质编码序列以及密码子中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国政府资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。2003年完成基因组测序,差错率为万分之一。这一时间表显示,计划将比开始的目标提前两年完成。2、疾病基因的定位克隆人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。3、多基因病的研究目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。4、中国的人类基因组研究国际HGP 研究的飞速发展和日趋激烈的基因抢夺战已引起了中国政府和科学界的高度重视。在政府的资助和一批高水平的生命科学家带领下,我国已建成了一批实力较强的国家级生命科学重点实验室,组建了北京、上海人类基因组研究中心。有了研究人类基因组的条件和基础,并引进和建立了一批基因组研究中的新技术。中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA文库和24种染色体区特异性DNA文库及其探针;构建了人X染色体YAC图谱,已完成了人X染色体Xp11.2-p21.3跨度的约35cM STS-YAC图谱的构建;建立了YAC-cDNA筛选技术。目前的研究工作还包括: 疾病和功能相关新基因的分离、测序和克隆的技术和方法学的创新研究;中国少数民族HLA分型研究及特种基因的分析; 人胎脑cDNA文库的构建和新基因的克隆研究。中国是世界上人口最多的国家,有56 个民族和极为丰富的病种资源,并且由于长期的社会封闭,在一些地区形成了极为难得的族群和遗传隔离群,一些多世代、多个体的大家系具有典型的遗传性状,这些都是克隆相关基因的宝贵材料。但是,由于我国的HGP 研究工作起步较晚、底子薄、资金投入不足,缺乏一支稳定的、高素质的青年生力军, 我国的HGP 研究工作与国外近年来的惊人发展速度相比,差距还很大,并且有进一步加大的危险。如果我们在这场基因争夺战中不能坚守住自己的阵地,那么在21 世纪的竞争中我们又将处于被动地位:我们不能自由地应用基因诊断和基因治疗的权力,我们不能自由地进行生物药物的生产和开发,我们亦不能自由地推动其他基因相关产业的发展。二、展望1、生命科学工业的形成由于基因组研究与制药、生物技术、农业、食品、化学、化妆品、环境、能源和计算机等工业部门密切相关,更重要的是基因组的研究可以转化为巨大的生产力,国际上一批大型制药公司和化学工业公司大规模纷纷投巨资进军基因组研究领域,形成了一个新的产业部门,即生命科学工业。世界上一些大的制药集团纷纷投资建立基因组研究所。Ciba-Geigy 和Ssandoz合资组建了Novartis 公司,并斥资2.5亿美元建立研究所,开展基因组研究工作。Smith Kline 公司花1.25亿美元加快测序的进度,将药物开发项目的25%建立在基因组学之上。Glaxo-Wellcome 在基因组研究领域投入4,700万美元,将研究人员增加了一倍。大型化学工业公司向生命科学工业转轨。孟山都公司早在1985年就开始转向生命科学工业。至1997年,该公司向生物技术和基因组研究的投入已高达66亿美元。1998年4月,杜邦公司宣布改组成三个实业单位,由生命科学领头。1998年5月,该公司又宣布放弃能源公司Conaco,将其改造成一家生命科学公司。Dow化学公司用9亿美元购入Eli Lilly公司40%的股票,从事谷物和食品研究,后又成立了生命科学公司。Hoechst公司则出售了它的基本化学品部门,转项投资生物技术和制药。传统的农业和食品部门也出现了向生物技术和制药合并的趋势。Genzyme Transgenics 公司培养出的基因工程羊能以较高的产量生产抗凝血酶III,一群羊的酶产量相当于投资1.15亿美元工厂的产量。据估计,转基因动物生产的药物成本是大规模细胞培养法的十分之一。一些公司还在研究生产能抗骨质疏松的谷物,以及大规模生产和加工基因工程食品。能源、采矿和环境工业也已在分子水平上向基因组研究汇合。例如,用产甲烷菌Methanobacterium 作为一种新能源。用抗辐射的细菌Deinococcus radiorans清除放射性物质的污染,并在转入tod基因后,在高辐射环境下清除多种有害化学物质的污染。2、功能基因组学人类基因组计划当前的整体发展趋势是什么?一方面,在顺利实现遗传图和物理图的制作后,结构基因组学正在向完成染色体的完整核酸序列图的目标奋进。另一方面,功能基因组学已提上议事日程。人类基因组计划已开始进入由结构基因组学向功能基因组学过渡、转化的过程。在功能基因组学研究中,可能的核心问题有:基因组的表达及其调控、基因组的多样性、模式生物体基因组研究等。(1)基因组的表达及其调控1)基因转录表达谱及其调控的研究一个细胞的基因转录表达水平能够精确而特异地反映其类型、发育阶段以及反应状态,是功能基因组学的主要内容之一。为了能够全面地评价全部基因的表达,需要建立全新的工具系统,其定量敏感性水平应达到小于1个拷贝/细胞,定性敏感性应能够区分剪接方式,还须达到检测单细胞的能力。近年来发展的DNA微阵列技术,如DNA芯片,已有可能达到这一目标。研究基因转录表达不仅是为了获得全基因组表达的数据,以作为数学聚类分析。关键问题是要解析控制整个发育过程或反应通路的基因表达网络的机制。网络概念对于生理和病理条件下的基因表达调控都是十分重要的。一方面,大多数细胞中基因的产物都是与其它基因的产物互相作用的;另一方面,在发育过程中大多数的基因产物都是在多个时间和空间表达并发挥其功能,形成基因表达的多效性。在一个意义上,每个基因的表达模式只有放到它所在的调控网络的大背景下,才会有真正的意义。进行这方面的研究,有必要建立高通量的小鼠胚胎原位杂交技术。2)蛋白质组学研究蛋白质组学研究是要从整体水平上研究蛋白质的水平和修饰状态。目前正在发展标准化和自动化的二维蛋白质凝胶电泳的工作体系。首先用一个自动系统来提取人类细胞的蛋白质,继而用色谱仪进行部分分离,将每区段中的蛋白质裂解,再用质谱仪分析,并在蛋白质数据库中通过特征分析来认识产生的多肽。蛋白质组研究的另一个重要内容是建立蛋白质相互关系的目录。生物大分子之间的相互作用构成了生命活动的基础。组装基因组各成分间的详尽作图已在T7噬菌体(55个基因)获得成功。如何在模式生物(如酵母)和人类基因组的研究中建立自动方法,认识不同的生化通路,是值得探讨的问题。3)生物信息学的应用目前,生物信息学已大量应用于基因的发现和预测。然而,利用生物信息学去发现基因的蛋白质产物的功能更为重要。模式生物体中越来越多的蛋白质构建编码单位被识别,无疑为基因和蛋白质同源关系的搜寻和家族的分类提供了极其宝贵的信息。同时,生物信息学的算法、程序也在不断改善,使得不仅能够从一级结构,也能从估计结构上发现同源关系。但是,利用计算机模拟所获得的理论数据,还需要经过实验经过的验证和修正。(2)基因组多样性的研究人类是一个具有多态性的群体。不同群体和个体在生物学性状以及在对疾病的易感性与抗性上的差别,反映了进化过程中基因组与内、外部环境相互作用的结果。开展人类基因组多样性的系统研究,无论对于了解人类的起源和进化,还是对于生物医学均会产生重大的影响。1)对人类DNA的再测序可以预测,在完成第一个人类基因组测序后,必然会出现对各人种、群体进行再测序和精细基因分型的热潮。这些资料与人类学、语言学的资料项结合,将有可能建立一个全人类的数据库资源,从而更好地了解人类的历史和自身特征。另外,基因组多样性的研究将成为疾病基因组学的主要内容之一,而群体遗传学将日益成为生物医药研究中的主流工具。需要对各种常见多因素疾病(如高血压、糖尿病和精神分裂症等)的相关基因及癌肿相关基因在基因组水平进行大规模的再测序,以识别其变异序列。2)对其它生物的测序对进化过程各个阶段的生物进行系统的比较DNA测序,将揭开生命35亿年的进化史。这样的研究不仅能勾画出一张详尽的系统进化树,而且将显示进化过程中最主要的变化所发生的时间及特点,比如新基因的出现和全基因组的复制。认识不同生物中基因序列的保守性,将能够使我们有效地认识约束基因及其产物的功能性的因素。对序列差异性的研究则有助于认识产生大自然多样性的基础。在不同生物体之间建立序列变异与基因表达的时空差异之间的相关性,将有助于揭示基因的网络结构。(3)开展对模式生物体的研究1)比较基因组研究在人类基因组的研究中,模式生物体的研究占有极其重要的地位。尽管模式生物体的基因组的结构相对简单,但是它们的核心细胞过程和生化通路在很大程度上是保守的。这项研究的意义是:1〕有助于发展和检验新的相关技术,如大规模测序、大规模表达谱检验、大规模功能筛选等;2〕通过比较和鉴定,能够了解基因组的进化,从而加速对人类基因组结构和功能的了解;3〕模式生物体间的比较研究,为阐明基因表达机制提供了重要的线索。目前对于基因组总体结构组成方面的知识,主要来源于模式生物体的基因组序列分析。通过对不同物种间基因调控序列的计算机分析,已发现了一定比例的保守性核心调控序列。根据这些序列建立的表达模式数据库对破译基因调控网络提供了必要的条件。2)功能缺失突变的研究识别基因功能最有效的方法,可能是观察基因表达被阻断后在细胞和整体所产生的表型变化。在这方面,基因剔除方法(knock-out)是一项特别有用的工具。目前。国际上已开展了对酵母、线虫和果蝇的大规模功能基因组学研究,其中进展最快的是酵母。欧共体为此专门建立了一个称为EUROFAN(European Functional Analysis Network)的研究网络。美国、加拿大和日本也启动了类似的计划。随着线虫和果蝇基因组测序的完成,将来也可能开展对这两种生物的类似性研究。一些突变株系和技术体系建立后,不仅能够成为研究单基因功能的有效手段,而且为研究基因冗余性和基因间的相互作用等深层次问题奠定了基础。小鼠作为哺乳动物中的代表性模式生物,在功能基因组学的研究中展有特殊的地位。同源重组技术可以破坏小鼠的任何一个基因,这种方法的缺点是费用高。利用点突变、缺失突变和插入突变造成的随机突变是另一中可能的途径。对于人体细胞而言,建立反义寡核苷酸和核酶瞬间阻断基因表达的体系可能更加合适。蛋白质水平的剔除术也许是说明基因功能最有力的手段。利用组合化学方法有望生产出化学剔除试剂,用于激活或失活各种蛋白质。总之,模式生物体的基因组计划为人类基因组的研究提供了大量的信息。今后,模式生物体的研究方向是将人类基因组8~10万个编码基因的大部分转化为已知生化功能的多成分核心机制。而要获得酶一种人类进化保守性核心机制的精细途径,以及它们的紊乱导致疾病的各种途径的知识,将只能来自对人类自身的研究。通过功能基因组学的研究,人类最终将将能够了解哪些进化机制已经确实发生,并考虑进化过程还能够有哪些新的潜能。一种新的解答发育问题的方法可能是,将蛋白质功能域和调控顺序进行重新的组合,建立新的基因网络和形态发生通路。也就是说,未来的生物科学不仅能够认识生物体是如何构成和进化的,而且更为诱人的是产生构建新的生物体的可能潜力。