当前位置:首页 » 交易平台 » 统计套利之股票配对交易策略pdf
扩展阅读
黄色在线免费视频 2025-08-18 15:24:34
股票交易佣金万3千3 2025-08-18 15:11:02

统计套利之股票配对交易策略pdf

发布时间: 2021-08-06 01:56:48

⑴ 量化投资—策略与技术的作品目录

《量化投资—策略与技术》
策略篇
第 1章 量化投资概念
1.1 什么是量化投资 2
1.1.1 量化投资定义 2
1.1.2 量化投资理解误区 3
1.2 量化投资与传统投资比较 6
1.2.1 传统投资策略的缺点 6
1.2.2 量化投资策略的优势 7
1.2.3 量化投资与传统投资策略的比较 8
1.3 量化投资历史 10
1.3.1 量化投资理论发展 10
1.3.2 海外量化基金的发展 12
1.3.3 量化投资在中国 15
1.4 量化投资主要内容 16
1.5 量化投资主要方法 21
.第 2章 量化选股 25
2.1 多因子 26
2.1.1 基本概念 27
2.1.2 策略模型 27
2.1.3 实证案例:多因子选股模型 30
2.2 风格轮动 35
2.2.1 基本概念 35
2.2.2 盈利预期生命周期模型 38
2.2.3 策略模型 40
2.2.4 实证案例:中信标普风格 41
2.2.5 实证案例:大小盘风格 44
2.3 行业轮动 47
2.3.1 基本概念 47
2.3.2 m2行业轮动策略 50
2.3.3 市场情绪轮动策略 52
2.4 资金流 56
2.4.1 基本概念 56
2.4.2 策略模型 59
2.4.3 实证案例:资金流选股策略 60
2.5 动量反转 63
2.5.1 基本概念 63
2.5.2 策略模型 67
2.5.3 实证案例:动量选股策略和反转选股策略 70
2.6 一致预期 73
2.6.1 基本概念 74
2.6.2 策略模型 76
2.6.3 实证案例:一致预期模型案例 78
2.7 趋势追踪 84
2.7.1 基本概念 84
2.7.2 策略模型 86
2.7.3 实证案例:趋势追踪选股模型 92
2.8 筹码选股 94
2.8.1 基本概念 95
2.8.2 策略模型 97
2.8.3 实证案例:筹码选股模型 99
2.9 业绩评价 104
2.9.1 收益率指标 104
2.9.2 风险度指标 105
第 3章 量化择时 111
3.1 趋势追踪 112
3.1.1 基本概念 112
3.1.2 传统趋势指标 113
3.1.3 自适应均线 121
3.2 市场情绪 125
3.2.1 基本概念 126
3.2.2 情绪指数 128
3.2.3 实证案例:情绪指标择时策略 129
3.3 有效资金 133
3.3.1 基本概念 133
3.3.2 策略模型 134
3.3.3 实证案例:有效资金择时模型 137
3.4 牛熊线 141
3.4.1 基本概念 141
3.4.2 策略模型 143
3.4.3 实证案例:牛熊线择时模型 144
3.5 husrt指数 146
3.5.1 基本概念 146
3.5.2 策略模型 148
3.5.3 实证案例 149
3.6 支持向量机 152
3.6.1 基本概念 152
3.6.2 策略模型 153
3.6.3 实证案例:svm择时模型 155
3.7 swarch模型 160
3.7.1 基本概念 160
3.7.2 策略模型 161
3.7.3 实证案例:swarch模型 164
3.8 异常指标 168
3.8.1 市场噪声 168
3.8.2 行业集中度 170
3.8.3 兴登堡凶兆 172
第 4章 股指期货套利 180
4.1 基本概念 181
4.1.1 套利介绍 181
4.1.2 套利策略 183
4.2 期现套利 185
4.2.1 定价模型 185
4.2.2 现货指数复制 186
4.2.3 正向套利案例 190
4.2.4 结算日套利 192
4.3 跨期套利 195
4.3.1 跨期套利原理 195
4.3.2 无套利区间 196
4.3.3 跨期套利触发和终止 197
4.3.4 实证案例:跨期套利策略 199
4.3.5 主要套利机会 200
4.4 冲击成本 203
4.4.1 主要指标 204
4.4.2 实证案例:冲击成本 205
4.5 保证金管理 208
4.5.1 var方法 208
4.5.2 var计算方法 209
4.5.3 实证案例 211
第 5章 商品期货套利 214
5.1 基本概念 215
5.1.1 套利的条件 216
5.1.2 套利基本模式 217
5.1.3 套利准备工作 219
5.1.4 常见套利组合 221
5.2 期现套利 225
5.2.1 基本原理 225
5.2.2 操作流程 226
5.2.3 增值税风险 230
5.3 跨期套利 231
5.3.1 套利策略 231
5.3.2 实证案例:pvc跨期套利策略 233
5.4 跨市场套利 234
5.4.1 套利策略 234
5.4.2 实证案例:伦铜—沪铜跨市场套利 235
5.5 跨品种套利 236
5.5.1 套利策略 237
5.5.2 实证案例 238
5.6 非常状态处理 240
第 6章 统计套利 242
6.1 基本概念 243
6.1.1 统计套利定义 243
6.1.2 配对交易 244
6.2 配对交易 247
6.2.1 协整策略 247
6.2.2 主成分策略 254
6.2.3 绩效评估 256
6.2.4 实证案例:配对交易 258
6.3 股指套利 261
6.3.1 行业指数套利 261
6.3.2 国家指数套利 263
6.3.3 洲域指数套利 264
6.3.4 全球指数套利 266
6.4 融券套利 267
6.4.1 股票—融券套利 267
6.4.2 可转债—融券套利 268
6.4.3 股指期货—融券套利 269
6.4.4 封闭式基金—融券套利 271
6.5 外汇套利 272
6.5.1 利差套利 273
6.5.2 货币对套利 275
第 7章 期权套利 277
7.1 基本概念 278
7.1.1 期权介绍 278
7.1.2 期权交易 279
7.1.3 牛熊证 280
7.2 股票/期权套利 283
7.2.1 股票—股票期权套利 283
7.2.2 股票—指数期权套利 284
7.3 转换套利 285
7.3.1 转换套利 285
7.3.2 反向转换套利 287
7.4 跨式套利 288
7.4.1 买入跨式套利 289
7.4.2 卖出跨式套利 291
7.5 宽跨式套利 293
7.5.1 买入宽跨式套利 293
7.5.2 卖出宽跨式套利 294
7.6 蝶式套利 296
7.6.1 买入蝶式套利 296
7.6.2 卖出蝶式套利 298
7.7 飞鹰式套利 299
7.7.1 买入飞鹰式套利 300
7.7.2 卖出飞鹰式套利 301
第 8章 算法交易 304
8.1 基本概念 305
8.1.1 算法交易定义 305
8.1.2 算法交易分类 306
8.1.3 算法交易设计 308
8.2 被动交易算法 309
8.2.1 冲击成本 310
8.2.2 等待风险 312
8.2.3 常用被动型交易策略 314
8.3 vwap算法 316
8.3.1 标准vwap算法 316
8.3.2 改进型vwap算法 319
第 9章 其他策略 323
9.1 事件套利 324
9.1.1 并购套利策略 324
9.1.2 定向增发套利 325
9.1.3 套利重仓停牌股票的投资组合 326
9.1.4 封闭式投资组合套利 327
9.2 etf套利 328
9.2.1 基本概念 328
9.2.2 无风险套利 330
9.2.3 其他套利 334
9.3 lof套利 335
9.3.1 基本概念 335
9.3.2 模型策略 336
9.3.3 实证案例:lof 套利 337
9.4 高频交易 341
9.4.1 流动性回扣交易 341
9.4.2 猎物算法交易 342
9.4.3 自动做市商策略 343
9.4.4 程序化交易 343
理论篇
第 10章 人工智能 346
10.1 主要内容 347
10.1.1 机器学习 347
10.1.2 自动推理 350
10.1.3 专家系统 353
10.1.4 模式识别 356
10.1.5 人工神经网络 358
10.1.6 遗传算法 362
10.2 人工智能在量化投资中的应用 366
10.2.1 模式识别短线择时 366
10.2.2 rbf神经网络股价预测 370
10.2.3 基于遗传算法的新股预测 375
第 11章 数据挖掘 381
11.1 基本概念 382
11.1.1 主要模型 382
11.1.2 典型方法 384
11.2 主要内容 385
11.2.1 分类与预测 385
11.2.2 关联规则 391
11.2.3 聚类分析 397
11.3 数据挖掘在量化投资中的应用 400
11.3.1 基于som 网络的股票聚类分析方法 400
11.3.2 基于关联规则的板块轮动 403
第 12章 小波分析 407
12.1 基本概念 408
12.2 小波变换主要内容 409
12.2.1 连续小波变换 409
12.2.2 连续小波变换的离散化 410
12.2.3 多分辨分析与mallat算法 411
12.3小波分析在量化投资中的应用 414
12.3.1 k线小波去噪 414
12.3.2 金融时序数据预测 420
第 13章 支持向量机 429
13.1 基本概念 430
13.1.1 线性svm 430
13.1.2 非线性svm 433
13.1.3 svm分类器参数选择 435
13.1.4 svm分类器从二类到多类的推广 436
13.2 模糊支持向量机 437
13.2.1 增加模糊后处理的svm 437
13.2.2 引入模糊因子的svm训练算法 439
13.3 svm在量化投资中的应用 440
13.3.1 复杂金融时序数据预测 440
13.3.2 趋势拐点预测 445
第 14章 分形理论 452
14.1 基本概念 453
14.1.1 分形定义 453
14.1.2 几种典型的分形 454
14.1.3 分形理论的应用 456
14.2 主要内容 457
14.2.1 分形维数 457
14.2.2 l系统 458
14.2.3 ifs系统 460
14.3 分形理论在量化投资中的应用 461
14.3.1 大趋势预测 461
14.3.2 汇率预测 466
第 15章 随机过程 473
15.1 基本概念 473
15.2 主要内容 476
15.2.1 随机过程的分布函数 476
15.2.2 随机过程的数字特征 476
15.2.3 几种常见的随机过程 477
15.2.4 平稳随机过程 479
15.3 灰色马尔可夫链股市预测 480
第 16章 it技术 486
16.1 数据仓库技术 486
16.1.1 从数据库到数据仓库 487
16.1.2 数据仓库中的数据组织 489
16.1.3 数据仓库的关键技术 491
16.2 编程语言 493
16.2.1 GPU算法交易 493
16.2.2 MATLAB 语言 497
16.2.3 c#语言 504
第 17章 主要数据与工具 509
17.1 名策多因子分析系统 509
17.2 MultiCharts:程序化交易平台 511
17.3 交易开拓者:期货自动交易平台 514
17.4 大连交易所套利指令 518
17.5 mt5:外汇自动交易平台 522
第 18章 量化对冲交易系统:D-alpha 528
18.1 系统构架 528
18.2 策略分析流程 530
18.3 核心算法 532
18.4 验证结果 534
表目录
表1 1 不同投资策略对比 7
表2 1 多因子选股模型候选因子 30
表2 2 多因子模型候选因子初步检验 31
表2 3 多因子模型中通过检验的有效因子 32
表2 4 多因子模型中剔除冗余后的因子 33
表2 5 多因子模型组合分段收益率 33
表2 6 晨星市场风格判别法 36
表2 7 夏普收益率基础投资风格鉴别 37
表2 8 中信标普风格指数 41
表2 9 风格动量策略组合月均收益率 43
表2 10 大小盘风格轮动策略月收益率均值 46
表2 11 中国货币周期分段(2000—2009年) 49
表2 12 沪深300行业指数统计 50
表2 13 不同货币阶段不同行业的收益率 51
表2 14 招商资金流模型(cmsmf)计算方法 58
表2 15 招商资金流模型(cmsmf)选股指标定义 59
表2 16 资金流模型策略——沪深300 61
表2 17 资金流模型策略——全市场 62
表2 18 动量组合相对基准的平均年化超额收益(部分) 68
表2 19 反转组合相对基准的平均年化超额收益(部分) 69
表2 20 动量策略风险收益分析 71
表2 21 反转策略风险收益分析 73
表2 22 趋势追踪技术收益率 93
表2 23 筹码选股模型中单个指标的收益率情况对比 99
表3 1 ma指标择时测试最好的20 组参数及其表现 117
表3 2 4个趋势型指标最优参数下的独立择时交易表现比较 120
表3 3 有交易成本情况下不同信号个数下的综合择时策略 120
表3 4 自适应均线择时策略收益率分析 124
表3 5 市场情绪类别 126
表3 6 沪深300指数在不同情绪区域的当月收益率比较 128
表3 7 沪深300指数在不同情绪变化区域的当月收益率比较 129
表3 8 沪深300指数在不同情绪区域的次月收益率比较 130
表3 9 沪深300指数在不同情绪变化区域的次月收益率比较 130
表3 10 情绪指数择时收益率统计 132
表3 11 svm择时模型的指标 156
表3 12 svm对沪深300指数预测结果指标汇总 156
表3 13 svm择时模型在整体市场的表现 156
表3 14 svm择时模型在单边上涨市的表现 157
表3 15 svm择时模型在单边下跌市的表现 158
表3 16 svm择时模型在震荡市的表现 159
表3 17 噪声交易在熊市择时的收益率 170
表4 1 各种方法在不同股票数量下的跟踪误差(年化) 190
表4-2 股指期货多头跨期套利过程分析 199
表4 3 不同开仓比例下的不同保证金水平能够覆盖的市场波动及其概率 211
表4 4 不同仓单持有期下的保证金覆盖比例 212
表6 1 融券标的股票中在样本期内最相关的50 对组合(部分) 248
表6 2 残差的平稳性、自相关等检验 249
表6 3 在不同的阈值下建仓、平仓所能获得的平均收益 251
表6 4 采用不同的模型在样本内获取的收益率及最优阈值 252
表6 5 采用不同的模型、不同的外推方法在样本外获取的收益率(%) 253
表6 6 主成分配对交易在样本内取得的收益率及最优阈值 255
表6 7 主成分配对交易在样本外的效果 255
表6-8 各种模型下统计套利的结果 256
表6 9 延后开仓+提前平仓策略实证结果 260
表6 10 各行业的配对交易结果 261
表7 1 多头股票-期权套利综合分析表 283
表7 2 多头股票—股票期权套利案例损益分析表 284
表7 3 多头股票-指数期权套利案例损益分析表 285
表7 4 转换套利分析过程 286
表7 5 买入跨式套利综合分析表 289
表7 6 买入跨式套利交易细节 289
表7 7 卖出跨式套利综合分析表 291
表7 8 卖出跨式套利交易细节 292
表7 9 买入宽跨式套利综合分析表 293
表7 10 卖出宽跨式套利综合分析表 294
表7 11 买入蝶式套利综合分析表 296
表7 12 卖出蝶式套利综合分析表 298
表7 13 买入飞鹰套利分析表 300
表7 14 卖出飞鹰式套利综合分析表 301
表9 1 主要并购方式 324
表9 2 并购套利流程 325
表9 3 鹏华300 lof两次正向套利的情况 339
表9 4 鹏华300 lof两次反向套利的情况 340
表10 1 自动推理中连词系统 352
表10 2 模式识别短线择时样本数据分类 369
表10 3 rbf神经网络股价预测结果 375
表10 4 遗传算法新股预测参数设置 379
表10 5 遗传算法新股预测结果 380
表11 1 决策树数据表 389
表11 2 关联规则案例数据表 392
表11 3 som股票聚类分析结果 403
表11 4 21种股票板块指数布尔关系表数据片断 404
表12 1 深发展a日收盘价小波分析方法预测值与实际值比较 427
表12 2 不同分解层数的误差均方根值 428
表13 1 svm沪深300指数预测误差情况 445
表13 2 svm指数预测和神经网络预测的比较 445
表13 3 技术反转点定义与图型 448
表13 4 svm趋势拐点预测结果 450
表14 1 持续大涨前后分形各主要参数值 463
表14 2 持续大跌前后分形个主要参数值 465
表14 3 外汇r/ s 分析的各项指标 469
表14 4 v(r/s)曲线回归检验 470
表15 1 灰色马尔可夫链预测深证成指样本内(2005/1—2006/8) 484
表15 2 灰色马尔可夫链预测深证成指样本外(2006/9—2006/12) 484
表16-1 vba的12种数据类型 499
表18-1 d-alpha系统在全球市场收益率分析 534

⑵ 如何用例子浅显地解释什么是统计套利

  1. 统计套利的浅显例子,原理其实就用下面这张图可以解释:

老头:走路是随机的(random walk)
小狗:走路也是随机的(random walk)
老头和小狗中间的距离(狗绳):距离一定,具备稳定性

我们现在把这个场景应用到市场上,以股票为例

股票A: 价格Random Walk
股票B: 价格Random Walk
股票A和B的差价 (或者其他的linear combination的时间序列) : 具备稳定性

假设我们现在找到了这样一个股票A和B的序列,他们的差价,经过统计学的cointegration test证明具备稳定性(如adfuller test),我们计算出该时间序列的mean和std, 就可以设定一个稳定阀域,在偏离的时候买入/卖出,等到回归到稳定阀域再平仓。

举例,过去6个月内,A股票和B股票的价差序列为平稳序列,均值为10,标准差为2,我们设定阀域为1.5个标准差,那么平稳区间就是 7-13 当A-B > 13时,我们买入B, 卖出A, 当A-B<7的时候,我们买入A, 卖出B。等到回归到平稳区间平仓。

下面的回测是使用600815和601002做的一个配对交易的回测结果。可以看到虽然总收益不算很高,但是beta中性,最大回撤较小。

⑶ 关于分级基金B与股指期货统计套利的若干疑问

说实话 太专业了 不懂
股指期货交易的永远是4个合约 当月下月和随后的两个季月 除非临近交割(到期月第三个星期五) 不然都是当月合约为主力合约 比如现在主力合约就是if1205合约 一般不存在选择的问题
第二题不懂
第三题 肯定不能用A类去套 A类是固定收益类 跟股指没啥可比性 B类有溢价不同行情溢价率不一样 我不知道你在那里看到的B类和股指套利这个说法 没听说过 如果真套可能是利用B类在反弹时溢价会变高而指数不会从而赚取溢价的差价吧
第四题ETF和B类常规下无法做空真要套只能借助融资融券了 费率计算方面应该差不多 但是动用的资金方面就大不相同了
5题股指杠杆确定 但是B类由于溢价会变 所以杠杆不一定
6题可以做 但那就不是套利是配对交易了
银华鑫瑞母基金虽然也是指数型的虽然基本同涨跌 但是跟沪深300没啥必然联系 跟踪标的不一样 他们套应该也算配对交易吧

⑷ 量化对冲领域有哪些经典的策略和传奇人物

阿斯内斯是法玛在芝加哥大学指导的金融博士,其博士毕业论文在三因子模型的基础上加入了动量因子,以四因子模型的形式完成了一系列的实证分析。博士毕业后阿斯内斯进入高盛,成为了一名量化交易分析员,随后在高盛组建了全球阿尔法基金,主要从事以量化为导向的交易工作,业绩不俗。1997年他离开高盛创办了自己的AQR资本管理公司,目前该公司是全球顶尖的对冲基金之一。虽然没有直接的证据证明阿斯内斯在工作中采用的是多因子模型基础上的股价预测技术,但是可以想见的是,市值、账面市值比、动量因子和因子模型应该与其量化交易策略存在一定的关联。阿斯内斯在一些访谈和学术论文中也时常谈到价值、动量/趋势、低风险、套息等相关概念,是为佐证。

由学术研究进入量化交易实业领域的一个更为极端的例子,应该是文艺复兴科技公司的西蒙斯,这也是中国读者较为熟悉的一个量化交易从业者。西蒙斯于1961年在加州大学伯克利分校取得数学博士学位,年仅23岁,并在30岁时就任纽约州立大学石溪分校数学学院院长。他在1978年离开学校创立了文艺复兴科技公司,该公司因为旗下的量化旗舰基金——大奖章基金傲人的业绩而闻名。关于西蒙斯所使用的量化交易策略,坊间一直有诸多猜测。许多人认为其所使用的应该是基于隐马尔科夫模型的量化交易策略,原因在于西蒙斯的早期合伙人鲍姆是隐马尔科夫模型估计算法的创始人之一,同时文艺复兴科技公司招聘了大量的语音识别专家,隐马尔科夫模型正是语音识别领域的一个重要技术工具。作者对这一说法持怀疑态度,不过不管怎样,从文艺复兴科技公司比较另类的人员构成来看,这应该是一个比较纯正的使用量化交易策略进行运作的对冲基金公司。

虽然大部分的量化对冲基金正在使用的交易策略都或多或少的进行保密,但是仍然有一些量化交易策略在多年的使用后开始慢慢为外界所熟知,统计套利就是其中之一。这个策略的概念最早产生于摩根斯坦利,当时的做法也被称为配对交易,实际上就是使用统计的方法选取一对历史价格走势相似的股票,当两支股票之间的价格差距变大、超出一定阈值之后,就分别做多和做空这两支股票,依靠该价格差在随后的时间里回归到正常水平来获取收益。由于这种量化交易策略既源自于统计分析、又存在等待价差回归的套利特性,因此被称之为统计套利。而随着对这类交易策略的进一步深入研究,统计套利策略目前已经远远超出了配对交易的范畴,变得更加的复杂和多样化。

肖曾经是摩根斯坦利这个统计套利交易组的成员之一,他于1980年在斯坦福大学获得计算机博士学位,随后留校进行学术研究。肖在1986年加入摩根斯坦利后负责该组的技术部门,但是在两年之后、如同统计套利的首创者班伯格(注)一样、由于政治斗争等原因从公司离职,并创立了自己的德劭基金公司。结合了肖的大规模并行计算研究背景和在摩根斯坦利接触到的统计量化策略,德劭基金公司利用计算机量化模型作为主要的策略进行交易并取得了巨大的成功。值得一提的时,肖在对冲基金领域扎根之后,仍然不忘科学研究,其成立的德劭研究公司致力于通过强大的计算机硬、软件能力在分子动力学模拟等生化科研领域取得前沿性进展。这与阿斯内斯一直在金融杂志上发表学术论文的行为,相映成趣,当然肖的学术研究相对而言可能更为极客一些。

相比起统计套利,传统意义上的套利策略是一个更为人熟知、更经典的量化交易策略。实际上现代金融框架的一部分都是基于“无套利”这样一个假设原则建立起来的,可见套利策略的深入人心与重要性。如果说统计套利的重点在于刻画和预测多个资产间的统计关系,那么传统套利可能就更重注于各个资产的价值计算,以及策略执行时的交易成本估计和优化。只不过量化交易策略进化到现在,统计套利和传统的套利策略已经是互相渗透、互相融合的了。以计算机能力见长的德劭基金公司,对这两种套利策略应该都是有所涉及的。

说起套利,不得不提到长期资本管理公司。这家公司的阵容十分豪华,包括债券套利的先驱梅里韦瑟、两位诺贝尔奖获得者莫顿和斯科尔斯、美联储副主席穆林斯等诸多顶级从业者,主要从事的正是债券的量化套利交易,当然其中也会包含一些其他形式策略的成分。公司成立的前三年间表现非常出色,但是在1998年俄罗斯国债违约之后,相关的连锁反应使得公司产生巨大亏损,在美联储的干预下被华尔街几家公司出资接管,形同倒闭。实际上,长期资本管理公司在俄罗斯债券上的损失本身并不大,但是许多大金融机构在亏损环境下必须保证足够的资本量,因此通过出售流动性较好的七大工业国债券等资产来减低风险、增加资本,全球主要债券价格在卖出压力下大幅下跌,波动巨大,这才导致了杠杆极大的长期资本管理公司在债券套利上产生巨额亏损。

⑸ 股票统计套利策略和阿尔法策略的异同主要区别是什么

所谓的阿尔法,最初指的是超额收益,现在也有把阿尔法看做为绝对收益的。统计套利策略是利用统计学发现市场的规律来进行套利,但是否有超额收益,是否是绝对收益,依据不同的统计策略各有不同。实际上并无所谓的阿尔法策略,因为对于专业投资者而言,无论是追求相对收益还是追求绝对收益,都需要阿尔法。不过有一种策略叫可转移阿尔法策略,指的是通过对不同类型的资产进行组合,将有优势领域资产的超额收益转移到只能获取贝塔收益的资产上,从而从总体上看,资产组合具备了阿尔法也即超额收益。

⑹ 配对交易策略的股票组合价差图怎么做

经典量化交易策略(包括价值投资、技术指标、配对轮动、机器学习等)、研究型文章等

⑺ 什么叫做套利,套利违法吗

套利亦称“利息套汇”,套利不违法。

套利主要有两种形式:

(1) 不抛补套利。即利用两国资金市场的利率差异,把短期资金从低利率的市场调到高利率的市场投放,以获取利差收益。

(2) 抛补套利。即套利者在把短期资金从甲地调到乙地套利的同时,利用远期外汇交易避免汇率变动的风险。

套利活动会改变不同资金市场的供求关系,使各地短期资金的利率趋于一致,使货币的近期汇率与远期汇率的差价缩小,并使资金市场的利率差与外汇市场的汇率差价之间保持均衡,从而在客观上加强了国际金融市场的一体化。

但是大量套利活动的进行,会导致短期资本大规模的国际移动,加剧国际金融市场的动荡。

(7)统计套利之股票配对交易策略pdf扩展阅读:

套利交易模式主要分为4大类型,分别为:股指期货套利、商品期货套利、统计和期权套利。

1、股指期货套利

股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限、不同(但相近)类别股票指数合约交易,以赚取差价的行为。股指期货套利分为期现套利、跨期套利、跨市套利和跨品种套利。

2、商品期货套利

与股指期货对冲类似,商品期货同样存在套利策略,在买入或卖出某种期货合约的同时,卖出或买入相关的另一种合约,并在某个时间同时将两种合约平仓。

在交易形式上它与套期保值有些相似,但套期保值是在现货市场买入(或卖出)实货、同时在期货市场上卖出(或买入)期货合约;而套利却只在期货市场上买卖合约,并不涉及现货交易。 商品期货套利主要有期现套利、跨期对套利、跨市场套利和跨品种套利4种。

3、统计套利

有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利的,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。

统计对冲的主要思路是先找出相关性最好的若干对投资品种(股票或者期货等),再找出每一对投资品种的长期均衡关系(协整关系),当某一对品种的价差(协整方程的残差)偏离到一定程度时开始建仓——买进被相对低估的品种、卖空被相对高估的品种等到价差回归均衡时获利了结即可。

统计对冲的主要内容包括股票配对交易、股指套利、融券对冲和外汇套利交易。

期权套利

期权(Option)又称选择权,是在期货的基础上产生的一种衍生性金融工具。从其本质上讲,期权实质上是在金融领域将权利和义务分开进行定价,使得权利的受让人在规定时间内对于是否进行交易行使其权利,而义务方必须履行。

在期权的交易时,购买期权的一方称为买方,而出售期权的一方则称为卖方;买方即权利的受让人,而卖方则是必须履行买方行使权利的义务人。

期权的优点在于收益无限的同时风险损失有限,因此在很多时候,利用期权来取代期货进行做空、套利交易,会比单纯利用期货套利具有更小的风险和更高的收益率。

⑻ 华泰沪深300etf如何套利

套利也叫价差交易,套利指的是在买入或卖出某种电子交易合约的同时,卖出或买入相关的另一种合约。套利交易是指利用相关市场或相关电子合同之间的价差变化,在相关市场或相关电子合同上进行交易方向相反的交易,以期望价差发生变化而获利的交易行为。
套利交易模式总结为4大类型,分别为:股指期货套利、商品期货套利、统计和期权套利。
股指期货:
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限、不同(但相近)类别股票指数合约交易,以赚取差价的行为。股指期货套利分为期现套利、跨期套利、跨市套利和跨品种套利。
商品期货:
与股指期货对冲类似,商品期货同样存在套利策略,在买入或卖出某种期货合约的同时,卖出或买入相关的另一种合约,并在某个时间同时将两种合约平仓。在交易形式上它与套期保值有些相似,但套期保值是在现货市场买入(或卖出)实货、同时在期货市场上卖出(或买入)期货合约;而套利却只在期货市场上买卖合约,并不涉及现货交易。 商品期货套利主要有期现套利、跨期对套利、跨市场套利和跨品种套利4种
统计:
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利的,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。 统计对冲的主要思路是先找出相关性最好的若干对投资品种(股票或者期货等),再找出每一对投资品种的长期均衡关系(协整关系),当某一对品种的价差(协整方程的残差)偏离到一定程度时开始建仓——买进被相对低估的品种、卖空被相对高估的品种,等到价差回归均衡时获利了结即可。 统计对冲的主要内容包括股票配对交易、股指套利、融券对冲和外汇套利交易。

期权:
期权(Option)又称选择权,是在期货的基础上产生的一种衍生性金融工具。从其本质上讲,期权实质上是在金融领域将权利和义务分开进行定价,使得权利的受让人在规定时间内对于是否进行交易行使其权利,而义务方必须履行。在期权的交易时,购买期权的一方称为买方,而出售期权的一方则称为卖方;买方即权利的受让人,而卖方则是必须履行买方行使权利的义务人。期权的优点在于收益无限的同时风险损失有限,因此在很多时候,利用期权来取代期货进行做空、套利交易,会比单纯利用期货套利具有更小的风险和更高的收益率

⑼ 完全不懂金融,想学习量化投资需要学习哪些金融科目

我个人认为学习量化投资在金融方面需要具备两个方面的知识:
1、首先是要了解金融市场与金融产品,只有这样才能在众多市场与标的中选择合适的来构建投资组合,这一方面需要了解的基础知识有:金融市场与金融机构、投资学、金融衍生品等等;
2、其次是需要了解如何量化,相信你应该有足够的IT背景,编程没啥问题,其次的话就是要了解数理来沟通金融产品选择与编程落地,需要了解的科目有:概率论、统计学、计量经济学、金融经济学、数理金融等。