㈠ 股票如何实现量化交易
采用交易接口介入,文化财经好像有!
㈡ 什么是股票量化交易
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
温馨提示:以上内容仅供参考。
应答时间:2021-09-13,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
截至2012年12月05日。股票代码:600519(贵州茅台)---行业:食品饮料;子行业:饮料制造。
摘要贵州茅台酒股份有限公司于1999年11月20日成立,注册资金10.38亿元,法人代表袁仁国,上市日期为2001年8月27日。
统计数据
52周最高266.08 目前总股数(百万股) 1038.18 总市值(亿元) 2041.48 Alpha收益-0.0010
52周最低168.25 营业收入(2012.百万) 23533.88* 年初至今收益率(%) 0.00 Beta系数0.79
每股收益(TTM) 12.77 每股收益(2012.元/股) 13.52* 2011每股自由现金流8.04 R平方0.1548
市盈率(TTM) 15.4 动态市盈率(倍) 14.55* 机构投资者比率(%) 2.80 信用指数A(A > D);
根据有关营业收入预测模型, 2 0 1 2 贵州
茅台的预期营业收入为2 3 5 . 3 3 9 亿元,
同比预增4 7 . 7 8 % 。根据有关营业收入预测模
型使用数量化分析方法, 对公司财务数据
进行了标准化处理, 并剔除了季节波动影
响。
根据有关盈利预测模型, 这里主要考察上
市公司的基本面价值, 包括企业过去不同
时间区间内的营业成本、经营费用等, 并
剔除了非经常性项目的损益, 得出贵州茅
台2 0 1 2 年4 季度预期每股收益为2 . 9 8 3 2
元, 同比预增, 此外, 从2 0 1 1 年4 季度到
2 0 1 2 年3 季度, 该公司有1 次出现正面盈
利惊奇。
自2 0 1 1 年4 季度至2 0 1 2 年3 季度的4 个季
度中, 贵州茅台的净利润按照1 4 . 7 8 % 的
速度增长, 好于所有公布3 季报公司中
6 8 . 2 0 % 的公司。
综上所述:现在将贵州茅台的一周价格波动区间由
1 9 6 . 9 5 ~ 2 2 8 . 0 8 调整为1 9 6 . 6 4 ~
2 2 1 . 7 1 , 较目前价格有1 2 . 7 5 % 的上升空
间。
===================================
财务报表数据摘要
报告日期2011一季度2011二季度2011三季度2011四季度2012一季度2012二季度2012三季度2011年度
每股有形资产账面价值30.40 32.27 31.24 32.84 34.29 37.47 36.63 34.40
每股现金流量3.61 2.03 3.56 1.08 1.29 3.01 2.99 10.24
每股净利润2.11 3.36 1.70 2.23 3.01 4.06 3.46 9.33
每股核心业务利润1.99 3.20 1.60 2.11 2.86 3.88 3.30 8.84
每股自由现金流3.30 1.56 3.09 0.17 0.64 2.02 1.70 8.04
财务杠杆率(%) 141.54 145.06 145.26 141.87 134.67 136.42 132.91 139.41
市净率:高8.89 9.50 9.87 8.89 7.99 9.19 8.72 9.01
市净率:低7.94 7.70 8.52 7.77 6.59 7.68 7.24 7.09
市盈率:高30.13 27.75 28.63 24.02 21.51 22.38 20.57 24.33
市盈率:低26.91 22.50 24.71 20.98 17.73 18.71 17.06 19.16
报告日期2011一季度2011二季度2011三季度2011四季度2012一季度2012二季度2012三季度2011年度
收入(百万元) 3512.01 5036.55 3162.07 4214.33 5207.61 6700.61 6238.51 15924.96
营业利润(百万元) 2652.28 4237.31 2392.80 3053.77 4173.01 5626.68 4887.60 2652.28
折旧(百万元) 0.00 165.46 -165.46 348.11 348.11
财务费用(百万元) -53.47 -95.41 -68.92 -132.94 -97.32 -89.88 -110.26 -350.75
利润总额(百万元) 2654.11 4233.24 2392.21 3055.11 4174.93 5625.25 4785.08 12334.66
所得税费用(百万元) 662.81 1058.23 627.80 735.50 1045.44 1405.80 1196.04 3084.34
净利润(百万元) 1991.29 3175.01 1764.41 2319.61 3129.49 4219.45 3589.04 9250.32
核心业务利润(百万元) 1882.69 3023.18 1661.92 2194.09 2969.19 4026.48 3424.33 8763.13
报告日期2011一季度2011二季度2011三季度2011四季度2012一季度2012二季度2012三季度2011年度
现金(百万元) 15998.49 17291.69 18288.33 18254.69 18851.43 20981.86 18690.03 18254.69
流动资产(百万元) 23756.79 25469.48 26986.67 27829.63 29232.63 32424.28 31485.89 27829.63
总资产(百万元) 29161.70 30920.15 32894.26 34900.87 36407.58 39711.45 38834.88 34900.87
流动负债(百万元) 8611.02 9355.66 9790.96 9480.72 7859.19 11288.91 6825.54 9480.72
长期负债(百万元) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
普通股(百万元) 20282.77 5.21 22797.12 24991.18 27960.40 27837.30 31259.38 24991.18
股东权益(百万元) 20540.68 21544.96 23083.77 25403.38 28530.62 28404.78 31991.57 25403.38
资本性支出(百万元) 300.69 446.36 487.25 950.22 678.82 1022.50 1340.49 2184.53
现金流量(百万元) 3110.44 1473.41 3211.79 171.40 661.80 2100.72 1761.36 7967.05
流动比率(%) 275.89 272.24 275.63 293.54 371.95 287.22 461.30 293.54
长期负债/总资本 (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
利润率 (%) 56.70 63.04 55.80 55.04 60.09 62.97 57.53 58.09
总资产回报率 (%) 7.27 10.57 5.53 6.84 8.78 11.09 9.14 30.59
净资产收益率 (%) 10.30 15.33 8.03 9.71 11.82 15.12 12.15 42.64
======================================
㈣ 量化投资到底是什么鬼,未来将颠覆中国股票市场
量化投资在一定程度上已经被别有用心地神话或者说标签化了,就像当下风头正劲的“互联网金融”一样,很多时候都被包装成了看似“高端大气”、且可能“一夜暴富”的卖点或者噱头。追根溯源,其实量化就是指运用数学或者统计模型来模拟金融市场的未来走向,从而预估金融产品的潜在收益。在前文中,我们还曾提到多个数字,如平均年收益率、年回报率、年盈利率,这些其实都表征同一个量化指标,即“年化收益率”。它是指投资者在一年的投资期限内所能获得收益比例,专门用于评估投资行为或金融产品的好坏优劣。 那么,究竟多高的年化收益率才能给投资者带来丰厚的投资回报?为了更加清楚的分析这个问题,我们不妨举个例子。
比如某位名叫“G”的投资者,在1990年时持有3.8万的启动资金,如果其所认购产品的平均年化收益率是60%,那么经过25年,到2015年,“G”将会拥有40亿,但如果其所购产品的平均年化收益率上涨15%(到75%),那么25年后,“G”的资产将会是40亿后再加个零,变成400个亿。百亿身价竟仅仅始于3.8万?这种堪比原子弹爆炸的财富增长若仅仅用“回报丰厚”来形容,会不会未免有些太吝啬了?我并不十分相信那些投行精英们会如此慷慨无私,让投资者只需在家坐着就能稳收百亿回报,所以如果今后有人向我推荐金融产品,而且宣称年化收益率可以有60%,我肯定得思量思量,自己是不是真的运气那么好,这辈子可以被钱砸晕?毕竟像文艺复兴公司的传奇也像“文艺复兴”一样,虽然能被历史铭记,但却难以被时代复制。
㈤ 量化分析的量化投资策略
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1·量化选股
量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类
2·量化择时
股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3·股指期货套利
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。
4·商品期货套利
商品期货套利盈利的逻辑原理是基于以下几个方面 :(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。(2)由于价格的波动性,价格差价经常出现不合理。(3)不合理必然要回到合理。(4)不合理回到合理的这部分价格区间就是盈利区间。
5·统计套利
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。
6·期权套利
期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。
7·算法交易
算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。
8·资产配置
资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。
㈥ 量化投资
没有你想的书
我多年来都有关注这方面的书 可是也没有在国内找到
数量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪;相对于传统投资方式来说,具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点。量化投资技术几乎覆盖了投资的全过程,包括估值与选股、资产配置与组合优化、订单生成与交易执行、绩效评估和风险管理等,在各个环节都有不同的方法及量化模型:
一、估值与选股
估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。对上市公司的估值包括相对估值法和绝对估值法,相对估值法主要采用乘数方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;绝对估值法主要采用折现的方法,如公司自由现金流模型、股权自由现金流模型和股利折现模型等。相对估值法因简单易懂,便于计算而被广泛使用;绝对估值法因基础数据缺乏及不符合模型要求的全流通假设而一直处于非主流地位。随着全流通时代的到来和国内证券市场的快速发展,绝对估值法正逐渐受到重视。
选股:在当前品种繁多的资本市场中,从浩瀚复杂的数据背后选出适合自己投资风格的股票变得越加困难。在基本面研究的基础上结合量化分析的手段就可以构建数量化选股策略,主流的选股方法如下:
资产配置方法与模型
资产配置类别 资产配置层次 资产配置方法 资产配置模型
战略资产配置 全球资产配置 大类资产配置 行业风格配置 收益测度 风险测度 估计方法 马克维茨 MV 模型 均值 -LPM 模型 VaR 约束模型 Black-Litterman 模型
战术资产配置 ( 动态资产配置 ) 周期判断 风格判断 时机判断 行业轮动策略 风格轮动策略 Alpha 策略 投资组合保险策略
基本面选股:通过对上市公司财务指标的分析,找出影响股价的重要因子,如:与收益指标相关的盈利能力、与现金流指标相关的获现能力、与负债率指标相关的偿债能力、与净资产指标相关的成长能力、与周转率指标相关的资产管理能力等。然后通过建立股价与因子之间的关系模型得出对股票收益的预测。股价与因子的关系模型分为结构模型和统计模型两类:结构模型给出股票的收益和因子之间的直观表达,实用性较强,包括价值型(本杰明·格雷厄姆—防御价值型、查尔斯·布兰迪—价值型等)、成长型(德伍·切斯—大型成长动能、葛廉·毕克斯达夫—中大型成长股等)、价值成长型(沃伦·巴菲特—优质企业选择法、彼得·林奇—GARP价值成长法等)三种选股方法;统计模型是用统计方法提取出近似线性无关的因子建立模型,这种建模方法因不需先验知识且可以检验模型的有效性,被众多经济学家推崇,包括主成分法、极大似然法等。
多因素选股:通过寻找引起股价共同变动的因素,建立收益与联动因素间线性相关关系的多因素模型。影响股价的共同因素包括宏观因子、市场因子和统计因子(通过统计方法得到)三大类,通过逐步回归和分层回归的方法对三类因素进行选取,然后通过主成分分析选出解释度较高的某几个指标来反映原有的大部分信息。多因素模型对因子的选择有很高的要求,因子的选择可依赖统计方法、投资经验或二者的结合,所选的因子要有统计意义上或市场意义上的显著性,一般可从动量、波动性、成长性、规模、价值、活跃性及收益性等方面选择指标来解释股票的收益率。
动量、反向选股:动量选股策略是指分析股票在过去相对短期的表现,事先对股票收益和交易量设定条件,当条件满足时买进或卖出股票的投资策略,该投资策略基于投资者对股票中期的反应不足和保守心理,在投资行为上表现为购买过去几个月表现好的股票而卖出过去几个月表现差的股票。反向选股策略则基于投资者的锚定和过度自信的心理特征,认为投资者会对上市公司的业绩状况做出持续过度反应,形成对业绩差的公司业绩过分低估和业绩的好公司业绩过分高估的现象,这为投资者利用反向投资策略提供了套利机会,在投资行为上表现为买进过去表现差的股票而卖出过去表现好的股票。反向选股策略是行为金融学理论发展至今最为成熟,也是最受关注的策略之一。
二、资产配置
资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。资产配置一般包括两大类别、三大层次,两大类别为战略资产配置和战术/动态资产配置,三大层次为全球资产配置、大类资产配置和行业风格配置。资产配置的主要方法及模型如下:
战略资产配置针对当前市场条件,在较长的时间周期内控制投资风险,使得长期风险调整后收益最大化。战术资产配置通常在相对较短的时间周期内,针对某种具体的市场状态制定最优配置策略,利用市场短期波动机会获取超额收益。因此,战术资产配置是在长期战略配置的过程中针对市场变化制定的短期配置策略,二者相互补充。战略资产配置为未来较长时间内的投资活动建立业务基准,战术资产配置通过主动把握投资机会适当偏离战略资产配置基准,获取超额收益。
三、股价预测
股价的可预测性与有效市场假说密切相关。如果有效市场假说成立,股价就反映了所有相关的信息,价格变化服从随机游走,股价的预测就毫无意义,而我国的股市远未达到有效市场阶段,因此股价时间序列不是序列无关,而是序列相关的,即历史数据对股价的形成起作用,因此可以通过对历史信息的分析来预测股价。
主流的股价预测模型有灰色预测模型、神经网络预测模型和支持向量机预测模型(SVM)。灰色预测模型对股价的短期变化有很强的预测能力,近年发展起来的灰色预测模型包括GM(1, 1)模型、灰色新陈代谢模型和灰色马尔可夫模型。人工神经网络模型具有巨量并行性、存储分布性、结构可变性、高度非线性和自组织性等特点,且可以逼近任何连续函数,目前在金融分析和预测方面已有广泛的应用,效果较好。支持向量机模型在解决小样本、非线性及高维模式识别问题中有许多优势,且结构简单,具有全局优化性和较好的泛化能力,比神经网络有更好的拟合度。
四、绩效评估
作为集合投资、风险分散、专业化管理、变现性强等特点的投资产品,基金的业绩虽然受到投资者的关注,但要对基金有一个全面的评价,则需要考量基金业绩变动背后的形成原因、基金回报的来源等因素,绩效评估能够在这方面提供较好的视角与方法,风险调整收益、择时/股能力、业绩归因分析、业绩持续性及Fama的业绩分解等指标和方法可从不同的角度对基金的绩效进行评估。
绩效评估模型 / 指标
绩效评估准则
择时 / 股能力
业绩归因分析
风险调整收益
业绩持续性
Fama 业绩分解
模型 / 指标
T-M 模型
H-M 模型
GII 模型
C-L 模型
资产配置收益
证券选择收益
行业选择收益
行业内个股选择收益
RAROC
Sharp, Stutzer
Treynor, Jensen
, ,
双向表分析
时间序列相关性
总风险收益
系统风险收益
分散化投资收益
五、基于行为金融学的投资策略
上世纪50~70年代,随着马科维茨组合理论、CAPM模型、MM定理及有效市场假说的提出,现代金融经济学建立了一套成熟的理论体系,并且在学术界占据了主导地位,也被国际投资机构广泛应用和推广,但以上传统经济学的理论基石是理性人假设,在理性人假设下,市场是有效率的,但进入80年代以后,关于股票市场的一系列研究和实证发现了与理性人假设不符合的异常现象,如:日历效应、股权溢价之谜、期权微笑、封闭式基金折溢价之谜、小盘股效应等。面对这些金融市场的异常现象,诸多研究学者从传统金融理论的基本假设入手,放松关于投资者是完全理性的严格假设,吸收心理学的研究成果,研究股市投资者行为、价格形成机制与价格表现特征,取得了一系列有影响的研究成果,形成了具有重要影响力的学术流派-行为金融学。
行为金融学是对传统金融学理论的革命,也是对传统投资实践的挑战。随着行为金融理论的发展,理论界和投资界对行为金融理论和相关投资策略作了广泛的宣传和应用,好买认为,无论机构投资者还是个人投资者,了解行为金融学的指导意义在于:可以采取针对非理性市场行为的投资策略来实现投资目标。在大多数投资者认识到自己的错误以前,投资那些定价错误的股票,并在股价正确定位之后获利。目前国际金融市场中比较常见且相对成熟的行为金融投资策略包括动量投资策略、反向投资策略、小盘股策略和时间分散化策略等。
六、程序化交易与算法交易策略
根据NYSE的定义,程序化交易指任何含有15只股票以上或单值为一百万美元以上的交易。程序化交易强调订单是如何生成的,即通过某种策略生成交易指令,以便实现某个特定的投资目标。程序化交易主要是大机构的工具,它们同时买进或卖出整个股票组合,而买进和卖出程序可以用来实现不同的目标,目前程序化交易策略主要包括数量化程序交易策略、动态对冲策略、指数套利策略、配对交易策略和久期平均策略等。
算法交易,也称自动交易、黑盒交易或无人值守交易,是使用计算机来确定订单最佳的执行路径、执行时间、执行价格及执行数量的交易方法,主要针对经纪商。算法交易广泛应用于对冲基金、企业年金、共同基金以及其他一些大型的机构投资者,他们使用算法交易对大额订单进行分拆,寻找最佳路由和最有利的执行价格,以降低市场的冲击成本、提高执行效率和订单执行的隐蔽性。任何投资策略都可以使用算法交易进行订单的执行,包括做市、场内价差交易、套利及趋势跟随交易。算法交易在交易中的作用主要体现在智能路由、降低冲击成本、提高执行效率、减少人力成本和增加投资组合收益等方面。主要的算法包括:交易量加权平均价格算法(VWAP)、保证成交量加权平均价格算法(Guaranteed VWAP)、时间加权平均价格算法(TWAP)、游击战算法(Guerrilla)、狙击手算法(Sniper)、模式识别算法(Pattern Recognition)等。
综上所述,数量化投资技术贯穿基金的整个投资流程,从估值选股、资产配置到程序化交易与绩效评估等。结合量化投资的特点及我国证券市场的现状,好买认为量化投资技术在国内基金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。
㈦ 中国量化交易的现状与未来前景如何
在欧美市场,特别是在美国,量化交易已经非常成熟。在过去的十年里,美国的对冲基金逐渐转向了量化交易。我国的数量发展还不到欧美国家的水平,还处于比较初级的阶段。但由于国内市场人口基数大,意味着国内市场潜力很大。
虽然短期内我量化贸易的发展还不如美国成熟,但最终的发展方向应该是相似的。通过对量化交易策略的研究,我们可以预测量化交易的未来前景。一个成熟的量化交易市场是值得我们学习的量化交易策略和理论,也是未来的发展方向。目前我国股市的有效性还不高,但随着量化投资能力的提高,市场的有效性会进一步提高,技术的波动会越来越小,技术的量化可能会达到瓶颈,从而转向基本面量化。
㈧ 股民如何应对量化交易
股民可以通过使用计算概率的方法应对量化交易、很多情况股民会通过股票的金叉和死叉进行买卖点,但是这种情况只有很小的概率会出现盈利的情况,所以只有进行概率统计才会使股票盈利的概率变高。
一、量化交易的概念
量化交易是指用先进的数学模型代替人工主观判断,利用计算机技术从庞大的历史数据中选择各种能带来超额收益的“高概率”事件来制定策略,大大降低投资者情绪波动的影响,避免在市场极度狂热或悲观时做出非理性的投资决策。目前国内量化投资规模约3500-4000亿元,其中公募基金1200亿元,其余为私募量化基金,数量达到300多只,占比3%(私募管理人超过9000人),金额约2000亿元。中国证券基金总体规模超过16万亿元,其中公募14万亿元,私募2.4万亿元。乐观估计,量化基金管理规模占国内证券基金的1%~2%。
二、股民应对量化交易的方法
了解投资的历史数据是什么,是股价数据还是公司的财务数据等基本面;分析的方式是分析价格形成的指数,还是分析公司的市场份额、盈利能力等基本面;概率怎么算?如果用MACD指标,就要数金叉能赢多少,是否通用。如果是基于基本面分析,就要统计基本面投资的成功率。最大的问题在于缺乏必要的“概率统计”,不能真正反映自己的投资逻辑,从而做不合时宜的生意。
综上所述,股民英语量化交易的唯一方法就是及早的进行概率统计,从中找到股票上涨概率比价高的股票进行投资。但是还是建议大家在进行投资的时候要谨慎考虑之后再进行过投资。
㈨ 什么是量化交易,未来前景如何知道的讲讲。
国外量化交易已经发展了40年左右,量化交易程序换交易占比60%,量化基金规模达到30个亿美元,而国内量化交易起步较晚第一只量化基金在2004年左右,至今量化交易规模不过2万亿RMB,国内现在的量化人才也很缺失,随着过来一批量化交易的海龟回来从事量化交易会一定程度带动行业的发展,但是仍需一定时间,加上国内量化交易政策还不够明朗,整体来说量化交易在国内还是一年蓝海,但是路途并非坦途。
㈩ 如何用量化的方法判断股票价格高点
量化有很多,每一种量化的方式都是不一样的,而且成功率高的量化指标。
1、多因子选股是最经典的选股方法,该方法采用采用一系列的因子(比如市盈率PE)作为选股标准,满足这些因子的股票被买入,不满足的被卖出。
2、风格轮动选股是利用市场风格特征进行投资,市场在某个时刻偏好大盘股,某个时刻偏好小盘股,如果发现市场切换偏好的规律,并在风格转换的初期介入,就可能获得较大的收益。
3、行业轮动选股是由于经济周期的的原因,有些行业启动后会有其他行业跟随启动,通过发现这些跟随规律,我们可以在前者启动后买入后者获得更高的收益,不同的宏观经济阶段和货币政策下,都可能产生不同特征的行业轮动特点。
4、资金流选股是利用资金的流向来判断股票走势。
等还有一些............