当前位置:首页 » 股票资讯 » 煤层气
扩展阅读
张明渝 2025-07-26 08:31:41
哪里看股票行业排名 2025-07-26 08:07:48
南玻今日股票价格 2025-07-26 07:56:57

煤层气

发布时间: 2021-07-04 05:14:28

Ⅰ 煤层气是什么东西

煤层气俗称“瓦斯”,其主要成份为高纯度甲烷,是近二十年在世界上崛起的新型能源,其资源总量与常规天然气相当。煤炭开采中排出的大量煤层气作为一种新型能源,具有独特的优势,是优化一次能源结构的重要组成部分,是优质的能源和基础化工原料。同时由于煤层气作为一种有害的危险气体,排放到大气中具有很强的温室效应,既破坏大气层、污染环境,又因其易燃易爆性严重危及着广大煤矿职工的生命财产安全。 山西是煤层气资源大省,煤层气资源量约10×1012m3,占全国总量的1/3, 主要分布在河东、沁水、霍西、宁武、西山五大煤田。经国土资源部审查批准,山西省煤层气探明储量402.19×108m3,可采储量218.39×108m3。其中以沁水和河东煤田最为富集,蕴藏量占全省煤层气总量的80%。沁水盆地煤层气资源量约5.35×1012m3,具有资源分布其中、埋深浅、可采性好、甲烷纯度高(大于95%)等特点,是目前全国第一个勘探程度最高、煤层气储量条件稳定、开发潜力最好的煤层气气田。煤层气资源的开发利用将会为社会创造巨额财富。我国具有丰富的煤层气资源,其开发潜力巨大。按照目前我国石油天然气资源发现率计算(10%),31.46万亿立方米的煤层气资源可获得3万亿立方米的天然气,参照目前天然气的中等价格,即每立方米天然气约1.0元(城市门站价)计算,将会为社会创造3万亿元的财富。事实上,随着科学技术的飞速发展,资源发现率将会大幅度上升,经济价值将不可估量。开发煤层气,形成煤层气产业将对国民经济发展起到巨大的推动作用。开发煤层气是一项庞大的系统工程,建设一个煤层气生产基地将带动道路、管道、钢铁、水泥、化工、电力、生活服务等相关产业的发展,增加就业机会,促进当地经济的发展。特别是对于我市这样一个能源重化工基地,发展煤层气产业对于保护资源、实现煤炭产业深加工及可持续发展、减少温室气体排放、改善大气环境质量,调整产业结构、加快煤化工产业规模化发展、培育新的经济增长点,都具有十分重要的现实意义和深远的战略意义。

Ⅱ 煤层气是什么

煤层气俗称“瓦斯”,其主要成分是CH4(甲烷),是主要存在于煤矿的伴生气体,也是造成煤矿井下事故的主要原因之一。它是成煤过程中经过生物化学热解作用以吸附或游离状态赋存于煤层及固岩的自储式天然气体,属于非常规天然气,它是优质的化工和能源原料。煤层气是热值高、无污染的新能源。它可以用来发电,用做工业燃料、化工原料和居民生活燃料。煤层气随着煤炭的开采泄漏到大气中,会加剧全球的温室效应。而如果对煤层气进行回收利用,在采煤之前先采出煤层气,煤矿生产中的瓦斯将降低70%~85%。

煤田瓦斯是一种能源资源。因此,各国都积极扩大抽放瓦斯的应用范围及研究煤田瓦斯开发与利用的技术途径。从勘察情况看,围岩瓦斯是可观的瓦斯源,而且有可能成为煤成气田。在高瓦斯矿井采后的老采空区中及报废的矿井中,一般都积存大量的瓦斯。这些瓦斯是很好的瓦斯源地。

我国的抚顺胜利煤矿是停产报废的矿井,但至今仍在抽放瓦斯,年抽放达到2300万立方米,可供给一个甲醛厂和6635户居民利用。地面钻孔预抽煤层瓦斯,是扩大煤田瓦斯开发的重要技术手段,它可以摆脱煤田开采条件的限制,达到提前抽放瓦斯。煤矿开采过程中放出的瓦斯,除抽放一部分外,其余都是经风流排至地面大气中。这部分瓦斯比抽放的瓦斯量大10余倍。科学家正在研究利用这种低浓度瓦斯的技术,如果该技术能达到工业应用水平,将为煤田瓦斯的开发利用开辟广阔的前景。

Ⅲ 煤成气与煤层气的区别

煤成气(油)与煤层气虽然在有机质类型及煤化过程中的生气机制等诸多方面有相同之处,气源也难以截然分开,但是煤成气(油)与煤层气的成藏条件有比较明显的差异。

(1)煤成气(油)源广于煤层气源

煤成气不仅源自煤层,也源自含煤岩系中的炭质泥岩和暗色泥质岩,并且在一些含煤盆地中,炭质泥岩和暗色泥质岩比煤岩更重要,是主要气源岩;“煤层气”主要生自含煤岩系中的煤层,炭质泥岩和暗色泥质岩不可能是“煤层气”的主要源岩,故煤成气(油)烃源较煤层气广。

(2)演化成气作用不同

虽然煤成气与煤层气都可以经过生物化学作用及热演化作用生成,但是世界上具有工业价值的煤成气田主要是以热演化作用为主形成的,煤层气则以早期和晚期生化作用生成为主。煤层气虽然可以分布在不同煤阶,但其生气机理比较复杂,可以与有机质成熟度没有关系,可以是未成熟,也可以处在高成熟阶段;其成因可以是热演化作用,但是早期和晚期生化作用的影响很大,即煤层经历过抬升剥蚀,进入生物大量活动的范围,地下水带入大量细菌和营养物质,对其中的有机质进行降解,产生煤层甲烷,故也有人称之为煤层生物气。

(3)气体组分、性质有较大差别

1)煤层气的气体组分更干。通常煤层气烃类组分甲烷大于98%~99%(除去非烃气体统计),占绝对优势,一般不含重烃,干燥系数C1/C1-4一般在0.99~1。

2)煤层气碳同位素值δ13C1值跨度很大,并且偏轻。δ13C1值为-24‰~-70‰(以<-50‰为主),跨进了生物气的分布区,如唐山、峰峰、鹤壁以及柳林、吴堡的煤层气 δ13C1值为-55‰~-70‰,说明了埋藏较浅的煤层气具有生物成因特征。

3)煤层气没有也不可能形成煤层油。

4)储集条件不同。煤层气是基本没有经过运移的煤型气,以煤层作为储层,煤层气的储层是以煤层中的孔隙和割理为主体,煤中的天然裂隙以割理为主,是煤中流体(气体和水)渗流的主要通道;煤成气是经过运移的煤型气,可以运移至含煤岩系之外,在合适的地层中储存,并聚集形成煤成气藏,其储层特点可以是单孔隙结构和双重孔隙结构,裂隙以构造裂隙为主。因此,“煤成气(油)”有明确的生、储、盖层及其组合,“煤层气”没有明确的生、储、盖层之分。

5)聚集条件不同。煤成气肯定是经过一定规模的运移、聚集过程,与其他类型天然气(油)一样,有明确的储盖组合、运聚成藏和圈闭条件;煤层气主要赋存在煤层的颗粒和裂隙表面,以吸附作用为主。因此煤层气藏是在地层压力作用下“圈闭”的有一定数量的煤岩体;“煤层气”藏的形成取决于煤层有机质生成的量和被煤层表面所吸附的气量。虽然煤层气在煤层中有自由(游离)和吸附两种状态赋存,其游离状态的煤层气是指“往返运动于煤层内生裂隙和外生裂隙中”的气体分子;吸附状态的煤层气则“以分子引力吸附于煤层裂隙表面和煤层的微孔隙内”。虽然煤层的孔隙度很小,但是孔隙内表面积高达100~400m2/g的煤,可以将大量的CH4分子吸附在微孔隙内表面上,从而在煤层中储藏有不可忽视的以CH4为主的煤层气。在地下状态,这两种状态的煤层气在地层压力和温度条件下处于动平衡状态。若压力增加、温度降低,游离态煤层气可转化为吸附状态;反之,若压力降低,吸附状态的煤层气可转化为游离状态,即煤层气的“解吸过程”,从而形成具有工业开采价值的煤层气藏。

6)储量计算与开采方式完全不同。煤成气与油型气一样,是用孔隙体积及圈闭法、储层压力等生产动态资料综合进行地质储量与可采储量计算,上述方法对于煤层气不适用。生产方式也完全不同,煤层气开采需要先实施排水使压力降至负压、煤层孔隙表面吸附的气体进行解吸采气;而煤成气则需要努力保持储层压力以确保高产。

7)煤层气产能高低与地下水活动性关系密切,地下水的分布和流动规律是控制煤层气藏形成与产能的关键因素。煤层气可以有储量,但储量丰度总体较低。限于当前的工艺水平和经济技术条件,适宜开发的煤层气埋藏深度通常<1200m。

总之,虽然煤成气(油)与煤层气都是成煤作用演化过程中形成的副产物,但是成藏条件有本质区别。煤成气(油)藏属常规天然气(油)藏范畴,煤层气藏属于非常规天然气藏范畴。研究、评价思路及勘探技术方法各具特色,勘探前景差异甚大。煤成气(油)藏可以形成大型、特大型气田,具有较大的经济价值;煤层气则必需实行较大面积连片开采,才具有一定的经济价值。

由于煤成气已成为世界许多大型、超大型工业气田的重要气源,在少数含煤盆地还可以形成煤成油田。为了加速中国天然气工业的发展,结合中国具体地质条件,本书将重点论述含煤盆地转化为含煤-含气(油)盆地的地质条件,主要总结煤成气成藏机理和勘探成果,以及中国煤成气(油)田的形成条件及其勘探前景。

Ⅳ 煤层气的特征

(一)煤层气的物理性质

煤层气的物理性质与煤层气的气体组成有关,不同气体组成的煤层气其物理性质亦有差异,但总的来说煤层气具有以下的物理性质:

1.煤层气分子的大小和分子量

煤层气分子的大小介于0.32~0.55nm之间,多为近似值(表4-2)。分子的偏心度或非均质度即偏心因子(两个分子间的相互作用力偏离分子中心之间的作用力的程度,为反映物质分子形状、极性和大小的参数),甲烷最小(只有0.008),分子平均自由程(气体分子运动过程中与其他分子两次碰撞之间的距离)约为其分子平均直径的200倍。其分子量由组成煤层气的各种分子的百分含量累加而成,称为表观分子量。

表4-2煤中吸附介质分子直径、沸点和分子自由程(0℃,0.101325MPa)

(据张新民等,2002)

2.煤层气的密度

标准状态下(1atm,温度15.55℃)单位体积煤层气的质量,单位为kg/m3。煤层气在地下的密度随分子量和压力增大而增大、随温度的升高而减小。标准状态下煤层气的密度为0.716kg/m3

煤层气的相对密度,是指同温度、压力条件下(1atm,温度15.55℃或20℃)煤层气密度与空气密度的比值。通常煤层气的相对密度为0.554。

3.煤层气的黏度

黏度是流体运动时其内部质点沿接触面相对运动、产生内摩擦力以阻抗流体变形的性质。常用动力黏度系数即流体内摩擦切应力与切应变率的比值来表示,其单位为泊(P)。煤层气的黏度很小,在地表常压、20℃时,甲烷的动力黏度系数为1.08×10-5MPa·s。表示黏度的参数还有运动黏度系数(即动力黏度与密度的比值,单位:cm2/s)和相对黏度(即液体的绝对黏度与水的绝对黏度的比值)。

煤层气的黏度与气体的组成、温度、压力等条件有关,在正常压力下黏度随温度的升高而变大,这与分子运动加速、气体分子碰撞次数增加有关,而随分子量增大而变小。在较高压力下,煤层气的黏度随压力增加而增长、随温度的升高而减小、随分子量的增大而增大。

4.煤层气的临界点

临界温度,是指气相纯物质维持液相的最高温度,高于这一温度气体即不能用简单升高压力的办法(不降低温度)使之转化为液体。临界压力,是指气、液两相共存的最高压力,即在临界温度时气体凝析所需的压力。高于临界温度,无论压力多大气体均不会液化;高于临界压力,不管温度多少液态和气态亦不能同时存在。只有当温度和压力均超过其临界温度和临界压力时,才称为超临界状态。

地层条件下,煤层气超临界吸附的现象是存在的。但只有当煤层气压力(气压)超过4.604MPa(表4-2)才真正出现超临界流体。实际上,在我国煤矿瓦斯实测压力中超过此压力的矿井是比较少的。但对于原位且处于封闭系统的煤储层而言,储层中水压等于气压,只要煤层埋深超过500m煤层气就可能成为超临界流体。

对于甲烷和氮气,任一埋深储层温度均高于临界温度,无论压力多大均不会液化。对于二氧化碳,当储层温度低于31.06℃(表4-2),对于乙烷,当储层温度低于32.37℃(表4-2)而储层压力(气压)高于液化压力时,二者均可以呈液态形式存在。按正常地温梯度3℃/100m、正常储层压力梯度0.98MPa/100m,设恒温带深度为20m、温度为10℃,则埋深500m左右时储层温度约为25℃、储层压力为4.9MPa,此时二者均低于临界温度和压力,二氧化碳和乙烷以气态形式存在;当埋深达到800m时储层温度约为34℃,高于临界温度,二氧化碳和乙烷仍为气态。但当二氧化碳压力大于7.38MPa、乙烷压力大于4.98MPa时,二氧化碳和乙烷有可能成为超临界流体;只有在500~800m范围内的局部层段(封闭体系),储层温度低于临界温度、储层压力高于液化压力时,二氧化碳和乙烷才可能以液态形式存在(图4-3)。

上面所述临界温度和临界压力是对单一气体组分而言的。在自然条件下,煤层气通常是多种组分气体的混合物。混合气体的临界温度高于其最低沸点组分的临界温度、低于最高沸点的临界温度,等于组成混合气体的各个组分的绝对临界温度与相应的分子浓度的乘积之和。相应地也可以计算出混合气体的临界压力。这种计算出来的临界温度和临界压力叫做混合气体的拟临界温度和拟临界压力。

5.煤层气的溶解度

煤层气能不同程度地溶解于煤储层的地下水中,不同的气体溶解度差别很大。20℃、1atm下单位体积水中溶解的气体体积称为溶解度(m3气/m3水),溶解度同气体压力的比值称为溶解系数(m3/m3·atm)。温度对溶解度的影响较复杂,温度<80℃时,随温度升高溶解度降低;温度>80℃时,溶解度随温度升高而增加(图4-4)。甲烷溶解度随压力的增加而增加,低压时呈线性关系,高压时(>10MPa)呈曲线关系(图4-5);甲烷溶解度随矿化度的增加而减少(图4-5)。所以在高温高压的地下水中溶解气明显增加。如果煤层水被CO2饱和时,则甲烷在水中的溶解度会明显增大。

图4-3二氧化碳在正常地温条件下的液化区间图

图4-4甲烷在水中的溶解度与温度的关系图 (据傅雪海等,2007)

图4-5不同温度、不同矿化度条件下的甲烷溶解度与压力的关系图 (据傅雪海等,2007)

6.主要气体组分的性质

甲烷为无色、无味、无臭、无毒气体(表4-3)。但煤储层中往往含有少量其他芳香族碳氢气体,因此常常伴着一些苹果香味。在大气压力为0.101325MPa、温度为0℃的标准状态下,甲烷的分子量为16.043,分子大小约为0.33~0.42nm;其密度为0.677kg/m3,相对密度为0.554(比空气轻),当空气中混有5.3%~16.0%浓度的甲烷时遇火即可燃烧或爆炸;动力黏度为1.084×10-5Pa·s;临界温度为-82.57℃,临界压力为4.604MPa(表4-2);热值约为37.62kJ/m3

表4-3煤层气成分的物理性质表

氮气是一种无色、无臭、无味的气体,微溶于水,0℃时1mL水仅能溶解0.023mL氮气。在1atm、15.55℃时,其密度为1.182kg/m3,相对密度为0.967(表4-2)。

二氧化碳为无色、无臭、略具酸味气体。在大气压力为0.101325MPa、温度为0℃的标准状态下,二氧化碳的分子量为44.010,分子大小约为0.33~0.47nm;密度为1.858kg/m3,相对密度为1.519(比空气重),突然喷出可使人窒息;其动力黏度为1.466×10-5Pa·s;其临界温度为31.06℃、临界压力为7.384MPa(表4-2)。

(二)煤层气的同位素特征

Law(1993)研究认为,世界各地煤层气的同位素差异较大,甲烷的δ13C1值分布范围很宽,介于-80‰~-16.8‰之间;乙烷δ13C2的值介于-3.29‰~-2.28‰之间;甲烷的δD值分布在-33.3‰~-11.7‰之间;二氧化碳的δ13C值为-2.66‰~-18.6‰。从煤样中解吸出的甲烷的δ13C1值比开采气或自由(游离)气体中甲烷的δ13C1值高出几个千分点。这是因为在解吸作用过程中发生了同位素分馏作用,δ13C1优先被解吸出来。

国内测试资料表明,煤层气δ13C1变化于-78‰~-28‰之间,分布范围广,同位素组成总体上偏轻,而且不同地区、不同地质时代和不同煤阶煤中的δ13C1分布特征亦有所不同。就地区而言,华北煤层气δ13C1为-78‰~-28‰,东北煤层气δ13C1为-68‰~-49‰,华南煤层气δ13C1为-68‰~-25‰(图4-6)。显然,我国煤层气的δ13C1地域分布总体上体现出不同地质时代不同构造背景下煤中有机质生烃演化的特点。华北和华南的煤层主要形成于晚古生代,经历了多阶段构造演化,煤化作用的地质背景较为复杂,煤阶跨度大,生气历程长,δ13C1变化大;东北煤层主要形成于中-新生代,热演化历程及其控制因素相对简单,煤阶普遍较低,δ13C1分布较为集中。

就全国来看,煤层气δ13C1与煤阶之间的关系尽管离散性较大,但规律性仍然相当明显(图4-7)。δ13C1随镜质组反射率增高而变重,但二者之间的这种正相关关系并不是线性的。当镜质组反射率小于2.0%时,δ13C1值增大的速率较快,由-65‰(镜质组反射率0.3%左右)增至-25‰(镜质组反射率2.0%左右),此后直到镜质组反射率4.0%附近δ13C1值仍低于-20‰。换言之,只有在进入无烟煤阶段之后,煤层气的δ13C1值才开始接近或落入腐殖型常规天然气δ13C1值的分布范畴(>-35‰)。

图4-6中国煤层气稳定碳同位素的地域分布图 (据叶建平等,1998)

图4-7中国煤层气稳定碳同位素分布与煤阶之间关系图 (据叶建平等,1998)

进一步分析特定地区煤层气稳定碳同位素的演化趋势发现,不仅δ13C1值与镜质组反射率之间的离散性显著减小,而且存在着有别于全国性趋势的区域规律。华北和华南煤层气δ13C1值与全国性规律一致、随煤阶增高而变重,且在进入无烟煤阶段后离散性明显变小(图4-8a,b)。东北煤层气δ13C1值的演化却与此相反,煤阶增高而δ13C1值变小(图4-8c)。

腐殖型常规天然气δ13C1与镜质组反射率之间呈对数相关关系,华北、华南和全国δ13C1值与煤阶之间的相关趋势与其一致,东北地区则与此相反,暗示东北煤层气稳定碳同位素的分布另有其他控制因素。

图4-8不同地区煤层气稳定碳同位素分布与煤阶之间关系图 (据叶建平等,1998)

Rice et al.(1993)总结美国和加拿大煤层气同位素资料后,得出气的稳定碳同位素δ13C1值与煤阶有很好的相关关系。一般低煤阶煤的δ13C1值小,煤阶增加而δ13C1值变大。但是同一煤阶δ13C1值具有很大的变化范围(图4-9)。此外,δ13C1值与现今煤层埋深亦有较好的对应关系,在煤阶一定情况下,浅部煤层气由轻同位素组成,深部煤层气则由重同位素组成。

图4-9煤层气δC1与Ro,max的关系图 据Rice et al.,1993)

Ⅳ 煤层气组成

煤层气地球化学分析数据主要来自煤岩解吸气、瓦斯抽放气及井口排采气等样品,前两者数据的分布范围较宽。对中国不同地质时代和不同煤级的358个井田(矿)煤层气组分的统计显示,煤层气组分构成以CH4为主,其含量变化范围为66.55%~99.98%,一般为85%~93%;CO2含量为0%~35.58%,一般<2%;N2的含量变化很大,一般<10%;重烃气含量随煤级不同而变化(张新民等,2002)。对美国煤层气井的795个气样的分析结果表明,煤层气的组分及其平均含量为:CH4占93.2%,C2+(重烃)占1.6%,CO2占4.4%,N2占0.8%(Scott et al.,1994)。从前人统计数据看,井口排采的煤层气无论是热成因气(如美国黑勇士盆地、中国沁水盆地),还是生物成因气(如美国粉河盆地、中国阜新盆地),煤层气的组分差别不是很大,主要为甲烷,平均为97%~99.75%;重烃气及非烃气含量均很低,一般小于2%(表11-1)。相对于常规天然气,煤层气组分比较一致,无论源岩的成熟度高低,煤层气的组分均显示为干气的特征。来源于煤系的常规天然气组分,往往受到源岩的成熟度影响,随着成熟度增大,甲烷含量升高,重烃气含量降低,过成熟的晚期阶段气体富集甲烷。如高过成熟煤系生成的克拉2气田甲烷含量达96.58%,C3以后的烷烃组分基本检测不到;成熟—高成熟阶段生成的牙哈凝析气田甲烷含量均值只有82.32%,C2-5含量达11.61%。

表11-1 中国典型煤成气与国内外煤层气组分及碳同位素统计

续表

在碳同位素组成上,煤层气与天然气(煤成气)有着明显的差别(陶明信,2005)。热成因的常规煤成气与煤层气碳同位素最大的区别是,成熟度相近源岩的煤层气甲烷碳同位素明显偏轻,如沁水盆地南部二叠系3#煤层的Ro最高可达3.5%以上,库车侏罗系煤系源岩Ro小于2%,但库车克拉2 晚期阶段聚集的天然气甲烷碳同位素为-27.3‰,明显重于沁水盆地南部过成熟的煤层气甲烷碳同位素值(-31.95‰),这种现象在其他盆地也普遍存在。造成这种现象的原因主要是受到次生生物作用的影响。

Ⅵ 煤层气的基本概念

煤层气是指赋存在煤层中的自生自储式非常规天然气,通常称为煤层甲烷,生产煤矿多称为煤层瓦斯。煤层气是成煤植物的有机质,在成煤过程中经过分解形成甲烷,即煤层气。常规天然气在地层中以气层气、溶解气、气顶气、水溶气和凝析气等原始状态赋存;而煤层气在地层中的原始状态是以吸附气、游离气和水溶气三种状态赋存,吸附气是煤层气最主要的赋存状态,这是煤层气区别于常规天然气的显著特点之一。因此,煤层是煤层气的储集层,简称煤储层。煤储层对于煤层气有两方面的能力:第一,在压力作用下有吸附煤层气体的能力,相反在人工排水降压条件下,煤储层中吸附气有解吸转变为游离气被抽出利用的能力;第二,由于孔隙 天然裂隙系统的存在,具有允许气体流动的能力。煤储层本身显示出两大特性:一是煤层的几何形态,如煤层厚度、连续性和密集度等;二是煤的储层物性,包括煤的孔隙性、渗透性、吸附 解吸性、储层压力等特性,这些特性直接控制煤储层的含气性,影响煤储层渗透性能和煤层气的开采潜能。中国煤层气资源十分丰富,是与常规天然气储量大致相等的新能源,勘探开发煤层气对开发新能源、环境保护和煤矿安全生产具有十分重要的意义。

Ⅶ 煤层气资源概况

我国煤层气资源丰富。据国际能源机构(IEA)估计,全球煤层气资源量可达260×1012m3(表6-1),中国居第三位。

表6-1 世界主要产煤国煤层气资源量统计[115] 单位:1012m3

据国土资源部、国家发改委、财政部联合组织开展的新一轮全国油气资源评价报告,我国埋深2000m以浅煤层气地质资源量约37×1012m3,主要分布在沁水、鄂尔多斯等9个含气盆地(群),埋深小于1000m的浅层煤层气资源量较大,资源赋存条件较好。

Ⅷ 煤层气成因

1.煤层气的形成过程

煤层气主要有生物成因和热成因两种成因机制。低煤阶泥炭和褐煤具有较高的孔隙度,含水量较高,在低温条件下形成生物成因甲烷和少量其他流体。成熟度增加,水被排出,孔隙度减小,温度上升到细菌生存的上限而使得生物成因甲烷减少,同时复杂有机质裂解作用释放出甲烷和重烃,并伴有部分非烃气体的形成。煤岩成熟度达到Ro=0.6%时,热成因烃类气开始生成,并一直贯穿整个煤化作用过程(图 11-1)(Clayton,1998)。

图11-1 煤化作用过程中不同组分天然气的产率

(据Clayton,1998)

目前开发的煤层气均位于1500m以浅的浅部煤层,煤层多经历了构造抬升作用,当煤层抬升到适合生物生存的温度范围时,煤层中有机质和CO2在生物作用下转变为甲烷形成次生生物气,即使是高演化程度的煤岩,在抬升过程中仍有次生生物气混入,表现为甲烷碳同位素值轻于-55‰,不同盆地、不同构造背景这种混入的程度有所差别(图11-2)。

往往通过数值模拟和物理模拟预测煤的生气潜力。早期由Macrae(1954)、Juntgen(1975)等提出的预测模型,通过观察煤化作用过程中元素成分的变化,计算出甲烷的生成量和残留在煤中的量。这些模型在后来的研究中广为采用,并与其他模型进行对比。根据这些研究结果,煤的生气潜力范围为100~300L/kg(Juntgen,1975;Rice,1993)。

图11-2 煤层沉积埋藏和抬升过程中不同成因煤层气的形成

2.煤层气的成因鉴别

经过40多年的研究,国内外对煤层气的成因有了一定的认识,总体上将有机成因煤层气划分为三大类、五小类,分别是:生物气,包括原生生物气和次生生物气;热成因气,包括热降解气和热裂解气;以及混合气。这些分类主要采用煤层气的组分组成、甲烷碳氢同位素组成、乙烷碳同位素以及煤岩热演化程度等指标,通常采用图示方法对煤层气成因进行鉴别,典型图版有 Bernard(1978)图版、Schoell(1983)图版、戴金星(1996)图版和Whiticar(1999)C-D图版,这些图版均采用组分含量和稳定碳同位素或者甲烷碳、氢同位素的二维数据组合对煤层气成因进行判别。

由于煤层气的成因具有明显的阶段性和复杂性,不同地区、不同地质背景煤层气成因类型不同,判别煤层气成因时需综合考虑各种因素。本节在前人研究的基础上,根据实测数据,利用煤层气成因判别常用的甲烷碳同位素、氢同位素和组分含量3个参数的信息,建立扩展的C-D鉴别图版(图11-3),结合研究区的地质特征,对煤层气的成因进行综合判别。扩展的C-D鉴别图版中,X轴和Y轴分别为甲烷的氢同位素和碳同位素,稳定同位素是煤层气的指纹特征,利用这两者能够比较好地分辨出生物气和热成因气,以及生物气中的不同作用类型,同时还能反映煤层气所经历的次生作用;图版中以气泡体积的大小表示煤层气烃类气体组分含量值,即C1/C2+,烃类组分含量可以反映煤层的演化阶段和煤层气所经历的次生作用等信息。

与以往的煤层气成因判别图版相比,扩展的C-D图版除了能对生物气(乙酸发酵,CO2还原作用)、热成因气和混合气进行判别外,还可以对低熟热成因气、热降解气和热裂解气进行区分。低熟热成因气地球化学特征表现为分布在热成因气的范畴之内,其甲烷碳同位素为-40‰≥δ13C1≥-45‰,比生物成因煤层气δ13C1略重,C1/C2+比生物气(小于4000)大,介于4000~10000之间,同时煤层热演化程度较低,Ro在0.5%左右,如阜新盆地煤层气属于典型的低熟热成因气。热降解气的典型特征是分布在热成因气范畴的中部,与低熟热成因气相比具有较重的甲烷δ13C1值(大于-40‰)和δD值(-150‰≥δD≥-200‰),以及较小的C1/C2+值(与生物气C1/C2+值相近),主要是因为煤层在热降解气生气阶段,以湿气为主。圣胡安盆地煤层气是热降解气典型的例子。热裂解气的标志是具有很高的甲烷δ13C1值(大于-40‰)和δD值(大于-200‰),同时C1/C2+值也很高,由于此阶段天然气的重烃组分等其他组分在温度的作用下遭受了裂解,使甲烷含量相对增加,热裂解气的煤岩热演化程度高,Ro在2.5%以上。

图11-3 煤层气成因扩展的C-D鉴别图版

沁水盆地南部煤层气的样品均落在图11-3所示图版中热成因气的热裂解气以及与岩浆等热事件有关的热成因气区域,即沁水盆地南部煤层气以热裂解气与异常热事件有关的热成因气为主。结合实际地质条件,沁水盆地南部煤层气热演化程度较高,Ro值在3.0%左右,达到了高变质无烟煤阶段,如果假设研究区主要以单一深成变质作用为主,石炭-二叠系的煤层所处温度在83~153℃之间,最大的Ro值不会超过1.5%,仅靠深成变质作用不能完全解释沁水盆地南部煤岩进入高演化程度现象。研究区包裹体、磷灰石、锆石裂变径迹和矿物岩石学等方面均证明,区域岩浆热变质作用是沁水盆地南部煤岩进入高演化阶段的主要原因。岩浆热事件使煤层温度迅速升高,一方面会导致煤层生气量的增加,另一方面使原先生成的烃类发生裂解。在晚侏罗世,燕山构造运动使沁水盆地煤层强烈抬升,造成煤层出露于地表并遭受地表水的渗入,原始煤层气的同位素在水动力条件下发生分馏效应,构造抬升过程中煤层温度和压力的改变又可能发生煤层气的解吸-扩散效应和生物改造作用,改变了原始煤层气的地球化学特征。因此,沁水盆地煤层气为与岩浆相关的热裂解气,且经历了次生改造作用。

与沁水盆地南部不同,韩城地区煤层气的主要来源为热降解气成因,韩城地区煤层热演化程度处于贫煤阶段,Ro值在1.6%~2.2%的范围内,属于热降解气生成阶段。在白垩纪末期,燕山构造运动使韩城地区煤层抬升,煤层出露并接受地表水的补给和渗入,水动力条件、生物作用及解吸-扩散作用使煤层气发生同位素分馏效应。

阜新盆地煤处于低成熟热演化阶段,Ro主要分布于0.5%~0.6%之间,受辉绿岩墙侵入引起的接触变质作用的影响,局部煤层Ro可达到1%以上。根据判别图版,阜新盆地煤层气主要属低成熟热降解气,并有次生生物气的混合。

Ⅸ 什么是煤层气

在煤的形成过程中伴随着3种副产品生成——甲烷、二氧化碳和水。由于甲烷是可燃性气体,又深藏在煤层之中,所以人们称它为“煤层气”。

甲烷一旦产生,便吸附在煤的表面上。甲烷的产生量与煤层深浅有关。一般来讲,煤层越深,煤层气越多。

理想的煤层气条件是:煤层深度300米~900米,覆盖层厚度超过300米,煤层厚度大于1.5米,吨煤含气量大于8.51立方米,裂缝密度大于1.5米/条为好。

开采甲烷的关键问题有2个:一是使甲烷从煤的表面解吸下来,一般是靠降低煤层压力来解决,主要办法是通过深水移走来降低压力;二是让从煤层表面解吸下来的甲烷顺利穿过裂缝进入井孔。

煤层气如果得不到充分利用,会带来2大害处:一是在煤层开采过程中以瓦斯爆炸的形式威胁矿工的生命安全;二是每年全球有上千亿立方米的瓦斯进入大气中,对环境造成巨大污染。所以,在很早以前人们就想把煤层气作为资源加以利用,让它化害为利,这便是人们开发利用煤层气的最初动因。

进入20世纪70年代后,受能源危机的影响,人们在寻找新能源方面的积极性空前高涨。在有天然气资源的地方,天然气备受青睐;在没有天然气的地区,煤层气便成为人们寻找中的理想新能源。此外,随着开采和应用技术的进步以及显著的经济效益,又给煤层气的开发利用注入了新的动力。

开发煤层气在经济上的优越性表现在几个方面:勘探费用低、利润高、风险小、生产期长。其勘探费用低于石油的勘探费用,生产气井的成本也较低。一般来讲,煤层气的钻井成功率可达到90%以上,打一口井只需要2~10天。浅层井的生产寿命为16~25年,4米井的生产寿命为23~25年。

现有资料表明:全世界煤层气资源为113.2×1012~198.1×1012立方米。国外对煤层气的小规模开发利用始于上个世纪50年代,大规模开发利用则是从80年代开始的。

目前,美国煤层气的开采在世界上居领先地位,每天煤层气产量已超过2800万立方米。中国煤炭储量为1×1012吨,产量居世界首位,煤层气资源为35×1012立方米,相当于450亿吨标准煤,与中国常规天然气资源相当,已成为世界上最具煤层气开发潜力的国家之一。