当前位置:首页 » 股票资讯 » 天文学
扩展阅读
买的股票分红怎样登记 2025-07-28 21:02:58
今日安琪股票价格 2025-07-28 21:02:12

天文学

发布时间: 2021-07-04 17:34:37

① 什么是天文学

天文学是研究天体、宇宙的结构和发展的科学,内容包括天体的构造、性质和运行规律等。 人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。它同数学、物理、化学、生物、地学同为六大基础学科。 天文学的研究对于我们的生活有很大的实际意义,如授时、编制历法、测定方位等。天文学的发展对于人类的自然观有很大的影响。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。 天文学的一个重大课题是各类天体的起源和演化。天文学的主要研究方法是观测,不断的创造和改良观测手段,也就成了天文学家们不懈努力的一个课题。天文学和其他学科一样,都随时同许多邻近科学互相借鉴,互相渗透。天文观测手段的每一次发展,又都给应用科学带来了有益的东西。 天文学循着观测-理论-观测的发展途径,不断把人的视野伸展到宇宙的新的深处。

② 什么叫天文

天文的基本解释:
1.天体在宇宙间的分布、运行等现象。
2.天文学。

③ 什么是天文学

天文学

天文学(Astronomy)是研究宇宙空间天体、宇宙的结构和发展的学科。内容包括天体的构造、性质和运行规律等。主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。天文学是一门古老的科学,自有人类文明史以来,天文学就有重要的地位。

中文名 天文学 外文名 Astronomy 类 别 基础学科 研究方向 宇宙空间天体、结构和发展 学科分支 理论天文学及观测天文学


研究意义

天文学

天文学的研究对于我们的生活有很大的实际意义,对于人类的自然观有很大的影响。古代的天文学家通过观测太阳、月球和其他一些天体及天象,确定了时间、方向和历法。这也是天体测量学的开端。如果从人类观测天体,记录天象算起,天文学的历史至少已经有五六千年了。天文学在人类早期的文明史中,占有非常重要的地位。埃及的金字塔、欧洲的巨石阵都是很著名的史前天文遗址。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。

牛顿力学的出现,核能的发现等对人类文明起重要作用的事件都和天文研究有密切的联系。当前,对高能天体物理、致密星和宇宙演化的研究,能极大地推动现代科学的发展。对太阳和太阳系天体包括地球和人造卫星的研究在航天、测地、通讯导航等部门中都有许多应用。天文起源于古代人类时令的获得和占卜活动。

天文学循着观测-理论-观测的发展途径,不断把人的视野伸展到宇宙的新的深处。随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。现今,天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。

研究对象

随着天文学的发展,人类的探测范围由目测的太阳、月球、天空中的星星到达了距地球约100亿光年的距离,根据尺度和规模,天文学的研究对象可以分为:

行星层次

包括行星系中的行星、围绕行星旋转的卫星和大量的小天体,如小行星、彗星、流星体以及行星际物质等。恒星系统。

恒星层次

现时人们已经观测到了亿万个恒星,太阳只是无数恒星中很普通的一颗。


星系层次

人类所处的太阳系只是处于由无数恒星组成的银河系中的一隅。而银河系也只是一个普通的星系,除了银河系以外,还存在着许多的河外星系。星系又进一步组成了更大的天体系统,星系群、星系团和超星系团。

宇宙

一些天文学家提出了比超星系团还高一级的总星系。按照现今的理解,

总星系就是现时人类所能观测到的宇宙的范围,半径超过了100亿光年。

在天文学研究中最热门、也是最难令人信服的课题之一就是关于宇宙起源与演化的研究。对于宇宙起源问题的理论层出不穷,其中最具代表性,影响最大,也是最多人支持的就是1948年美国科学家伽莫夫等人提出的大爆炸理论。根据正不断完善的这个理论,宇宙是在约137亿年前的一次猛烈的爆发中诞生的。然后宇宙不断地膨胀,温度不断地降低,产生各种基本粒子。随着宇宙温度进一步下降,物质由于引力作用开始塌缩,逐级成团。在宇宙年龄约10年时星系开始形成,并逐渐演化为现时的样子。

研究方法

天文学研究的对象有极大的尺度,极长的时间,极端的物理特性,因而地面试验室很难模拟。因此天文学的研究方法主要依靠观测。由于地球大气对紫外辐射、X射线和γ射线不透明,因此许多太空探测方法和手段相继出现,例如气球、火箭、人造卫星和航天器等。

天文学的理论常常由于观测信息的不足,天文学家经常会提出许多假说来解释一些天文现象。然后再根据新的观测结果,对原来的理论进行修改或者用新的理论来代替。这也是天文学不同于其他许多自然科学的地方。

④ 天文是什么

天文气象是指
地球以外的诸如宇宙辐射强度
太阳大气的变化等

⑤ 天文学有什么作用和意义

天文学
据我看大致有四个作用:
1.天文学是
基础科学
发展的引擎之一:天文学关注的是最具有前瞻性的问题。这些问题的提出和解决本身对
自然科学
基本理论的研究有着非常重要的作用。往远了说,
太阳系
天体
运动的研究直接导致
牛顿力学
系统的建立,并随之引发第一次
科技革命
。往近了说,
暗物质

暗能量
的存在都是在天文学观测中被发现。
黑洞
的研究则是
量子引力
论最核心的问题。这些问题一旦未来被解决,将极大推动自然科学基础理论。而基础理论的进步又是
人类
科技
水平
进步的必要条件。
2.
地外行星
观测和
地外生命
研究将解答人类的命运问题:宇宙中是否有其他适于生存的
星球
。生命如何起源的。人类的存在是否是独特的,是否有其他的
智慧
种族
。以及在
遥远
未来,人类是否可以移民外星球?这些问题的解决,
关系
人类作为一个种族的命运。
3.天文学是能够提供极端条件的实验室:科学进步需要做大量的
实验
来验证
假说
。在当今时代,很多
理论
高能,高
磁场
等极端条件下的实验才能够验证。所以欧洲会建造巨大的
粒子加速器
LHC.
但即使如此,依然很多问题无法在
地球
实验室完成。而宇宙中很多天体物理现象,如
脉冲星

超新星
爆发,
类星体
吸积,自然的提供了极高能情况下的
物理
过程
。观测这些
天文现象
,可以帮助
人们
检验理论。
4.满足人类的好奇心:天文学研究人类历史上长期存在的根本追问。宇宙有多大,世界如何创生,生命从何而来。时间是否有
起点
......

⑥ 天文学什么概念

天文学是研究天体、宇宙的结构和发展的科学,内容包括天体的构造、性质和运行规律等。

人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。它同数学、物理、化学、生物、地学同为六大基础学科。

天文学的研究对于我们的生活有很大的实际意义,如授时、编制历法、测定方位等。天文学的发展对于人类的自然观有很大的影响。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。

天文学的一个重大课题是各类天体的起源和演化。天文学的主要研究方法是观测,不断的创造和改良观测手段,也就成了天文学家们不懈努力的一个课题。天文学和其他学科一样,都随时同许多邻近科学互相借鉴,互相渗透。天文观测手段的每一次发展,又都给应用科学带来了有益的东西。

天文学循着观测-理论-观测的发展途径,不断把人的视野伸展到宇宙的新的深处。

⑦ 天文学的区别分析

天文与数学是相辅相成的关系。
天文学是以观察及解释天体的物质状况及事件为主的学科,通过观测来收集天体的各种信息.然而,由于大量数据无法直接测量,需要通过数学演算间接推得(如日地距离),推动了数学的发展,对数、球面坐标系和三角函数等都是源自天文学研究.
天文学对观测工具的要求越来越高,而制造这些工具同样需要高超的数学、物理、化学知识.在牛顿用经典力学体系用数学语言描述宏观世界后,数学和天文学联系愈发紧密,非欧几何、微积分学等都在天文学的需求下快速发展。
天文其实就是科学的最基本 没有天文就没有数学没有物理,统领宇宙的是天文!宇宙学就是天文学的一个分支。数学和物理都是天文的基础,它们最初都是天文带起来的。

⑧ 什么叫天文学

天文学就是研究宇宙中的行星、恒星以及星系的科学。天文学和物理学、数学、地理学、生物学等一样,是一门基础学科。
天文学是以观察及解释天体的物质状况及事件为主的学科,通过观测来收集天体的各种信息。因而对观测方法和观测手段的研究,是天文学家努力研究的一个方向。天文学主要研究天体的分布、运动、位置、状态、结构、组成、性质及起源和演化。 天文学的一个重大课题是各类天体的起源和演化。天文学和其他学科一样,都随时同许多邻近科学互相借鉴,互相渗透。天文观测手段的每一次发展,又都给应用科学带来了有益的东西。
天文学的研究对于我们的生活有很大的实际意义,对于人类的自然观有很大的影响。古代的天文学家通过观测太阳、月球和其他一些天体及天象,确定了时间、方向和历法。这也是天体测量学的开端。如果从人类观测天体,记录天象算起,天文学的历史至少已经有5、6千年了。天文学在人类早期的文明史中,占有非常重要的地位。埃及的金字塔、欧洲的巨石阵都是很著名的史前天文遗址。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。 牛顿力学的出现,核能的发现等对人类文明起重要作用的事件都和天文研究有密切的联系。当前,对高能天体物理、致密星和宇宙演化的研究,能极大地推动现代科学的发展。对太阳和太阳系天体包括地球和人造卫星的研究在航天、测地、通讯导航等部门中都有许多应用。
天文学循着观测-理论-观测的发展途径,不断把人的视野伸展到宇宙的新的深处。随着人类社会的发展,天文学的研究对象 天文学从太阳系发展到整个宇宙。现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。

研究对象

随着天文学的发展,人类的探测范围由目测的太阳、月球、天空中的星星到达了距地球约100亿光年的距离,根据尺度和规模,天文学的研究对象可以分为:
行星层次
包括行星系中的行星、围绕行星旋转的卫星和大量的小天体,如小行星、彗星、流星体以及行星际物质等。太阳系是目前能够直接观测的唯一的行星系。但是宇宙中存在着无数像太阳系这样的行星系统。
恒星层次
现在人们已经观测到了亿万个恒星,太阳只是无数恒星中很普通的一颗。
星系层次 :
人类所处的太阳系只是处于由无数恒星组成的银河系中的一隅。而银河系也只是一个普通的星系,除了银河系以外,还存在着许多的河外星系。星系又进一步组成了更大的天体系统,星系群、星系团和超星系团。
整个宇宙
一些天文学家提出了比超星系团还高一级的总星系。按照现在的理解,总星系就是目前人类所能观测到的宇宙的范围,半径超过了100亿光年。
在天文学研究中最热门、也是最难令人信服的课题之一就是关于宇宙起源与未来的研究。对于宇宙起源问题的理论层出不穷,其中最具代表性,影响最大,也是最多人支持的的就是1948年美国科学家伽莫夫等人提出的大爆炸理论。根据现在不断完善的这个理论,宇宙是在约137亿年前的一次猛烈的爆发中诞生的。然后宇宙不断地膨胀,温度不断地降低,产生各种基本粒子。随着宇宙温度进一步下降,物质由于引力作用开始塌缩,逐级成团。在宇宙年龄约10年时星系开始形成,并逐渐演化为今天的样子。

研究方法

天文学研究的对象有极大的尺度,极长的时间,极端的物理特性,因而地面试验室很难模拟。因此天文学的研究方法主要依靠观测。由于地球大气对紫外辐射、X射线和γ射线不透明,因此许多太空探测方法和手段相继出现,例如气球、火箭、人造卫星和航天器等。
天文学的理论常常由于观测信息的不足,天文学家经常会提出许多假说来解释一些天文现象。然后再根据新的观测结果,对原来的理论进行修改或者用新的理论来代替。这也是天文学不同于其他许多自然科学的地方。

⑨ 天文学专业学的课程

主干学科:天文学
主要课程:大学数学、大学物理、理论力学、数学物理方法、电动力学、普通天文学、实体天体物理、恒星物理基础、计算天文学入门等。
主要实践性教学环节:包括天文观测实习、毕业论文等,一般安排10-20周。
每所高校课程设置略有不同,各有侧重点,但以上这些都要学的。
希望可以帮到你主干学科:天文学
主要课程:大学数学、大学物理、理论力学、数学物理方法、电动力学、普通天文学、实体天体物理、恒星物理基础、计算天文学入门等。
主要实践性教学环节:包括天文观测实习、毕业论文等,一般安排10-20周。
每所高校课程设置略有不同,各有侧重点,但以上这些都要学的。
希望可以帮到你

⑩ 什么是天文

天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。

早期天文学的内容就其本质来说就是天体测量学。从十六世纪中期哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。

十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。

二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。

天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科