当前位置:首页 » 股票资讯 » abc猜想
扩展阅读
10万买股票5年能赚多少 2025-09-10 18:48:24
中国巨幕和imax的区别 2025-09-10 17:40:38

abc猜想

发布时间: 2021-09-10 23:15:58

『壹』 ABC猜想是什么意思没看懂…

ABC猜想最先由乔瑟夫·奥斯达利(Joseph Oesterlé)及大卫·马瑟(David Masser)在1985年提出,一直未能被证明。其名字来自把猜想中涉及的三个数字称为A、B、C的做法。
2012年8月,日本的京都大学数学家望月新一称证明了此猜想,但因其研究工具与论文无人看懂,故无法验证是否正确,此猜想至今仍未解决。

『贰』 abc猜想是什么

若d是abc不同素因数的乘积,这个猜想本质上是要说d通常不会比c小太多。换句话来说,如果a,b的因数中有某些素数的高幂次,那c通常就不会被素数的高幂次整除。

数论中的abc猜想(亦以Oesterlé–Masser猜想而闻名)最先由乔瑟夫·奥斯达利(Joseph Oesterlé)及大卫·马瑟(David Masser)在1985年提出,2012年数学家望月新一声称证明了此猜想。数学家用三个相关的正整数a,b和c(满足a + b = c)声明此猜想(也因此得名abc猜想)。

abc猜想因它所带来的一些关于数论的有趣的结论而著名,很多著名的猜想和定理都紧接着abc猜想问世,数学家Goldfeld认为abc猜想是“the most important unsolved problem in Diophantine analysis”。

Lucien Szpiro(法国数学家,因其在数论、算术代数几何和交换代数上的贡献而知其名)在2007年时尝试攻克此猜想,但后被证明其中有误。

在2012年8月,日本的京都大学数学家望月新一(mochizuki shin'ichi)发布了其四篇预印文稿,介绍了他的Inter-universal Teichmüller theory(宇宙际Teichmüller理论),并声称用此理论可证明包括abc猜想在内的几个著名猜想。

他的论文在数学期刊上刊登以供参考查阅,很多人也开始学习他的理论。很多数学家对他的文章持怀疑态度。也正是因为他这篇古怪晦涩的证明,我们知道了,要解决这个猜想或许还是要走上孤独的漫漫长路。不变的是,在我们试证明其正误之时,数学水平得到提高,也终将找到解决abc猜想之路。

『叁』 ABC猜想是指什么

abc猜想(abc conjecture)
最先由Joseph Oesterlé及David Masser在1985年提出。它说明对于任何ε>0,存在常数Cε> 0,并对于任何三个满足a+ b= c及a,b互质的正整数a,b,c,有:c<Cε rad(abc)^(1+ε) 其中,^后面的数表示指数,rad(n)表示n的质因数的积,[1] 如 rad(72) = rad (2×2×2×3×3) = 2×3 = 6 。

『肆』 abc猜想的项目内容

ABC@home 是一个由荷兰的一个数学研究院 Mathematical Institute of Leiden University 运作的,基于 BOINC 分布式计算平台的数学类项目,旨在通过搜索满足ABC猜想条件的三元数组获得这些数组的分布从而帮助数学家解决这个猜想。
即它利用分布式计算穷举直到 c<=10的满足ABC猜想条件的 (a,b,c) 三元数组,也就是说满足要求 c=a+b, a<b, rad(ABC)<C。其中 rad(n) 称为 n 的根积,意即 n 的所有质因数的乘积,若有重复的质因数则只取一个。例如,rad(1224)=rad((2^3)*(3^2)*17)=2*3*17=102。
项目通过研究这些三元数组的分布,试图寻找证明ABC猜想这个数学未解问题的方法。如果证明了ABC猜想,就可以部分证明费马-卡特兰 (Fermat-Catalan) 猜想,完全证明 Schinzel-Tijdeman 猜想等等。ABC猜想的具体内容是:对于所有e>0,存在与e有关的常数C(e),对于所有满足a+b=c,a与b互质的三正整数组(a,b,c),均成立 c<=C(e)((rad(abc))^(1+e))。支持ABC猜想的证据有很多,比如说ABC猜想的多项式版本成立,ABC猜想也蕴含了费马大定理。D. Goldfeld 评价ABC猜想为“丢番图分析(意即系数与解均为整数的方程的分析)领域中最重要的未解决问题”。 ABC@home 希望能够通过了解满足条件的三元数组的分布来协助数学家解决ABC猜想。

『伍』 著名的"abc猜想"究竟是什么鬼

所谓的abc就是 正版 -盗版-水货 的区别。

『陆』 abc猜想的研究进展

许多数学家都花费了大量的精力试图证明这一猜想。在2007年,在法国数学家吕西安·施皮罗(Lucien Szpiro)在1978年的研究工作的基础之上,首次宣布对abc猜想的证明,但很快就发现证明中存在着缺陷。
2006年,荷兰莱顿大学数学系和荷兰Kennislink科学研究所联合启动了一个BOINC项目名为“ABC@Home”,用以研究该猜想。
2012年8月,日本京都大学数学家Shinichi Mochizuki(望月新一)公布了有关abc猜想(abc conjecture)长达500页的证明。虽然尚未被证实整个证明过程是正确无误的,但包括陶哲轩在内的一些著名数学家均对此给出了正面评价。

『柒』 abc猜想的猜想简介

abc猜想(abc conjecture)最先由Joseph Oesterlé及David Masser在1985年提出。它说明对于任何ε>0,存在常数Cε> 0,并对于任何三个满足a+ b= c及a,b互质的正整数a,b,c,有:

其中,rad(n)表示n的质因数的积, 如 rad(72) = rad (2×2×2×3×3) = 2×3 = 6 。
1996年,爱伦·贝克提出一个较为精确的猜想,将rad(n)用
取代,其中ω是a,b,c的不同质因子的数目。
abc猜想将许多丢番图问题都包含在其中,比如费马大定理。同许多丢番图问题一样,abc猜想完全是一个素数之间关系的问题。斯坦福大学布拉恩·康拉德(Brian Conrad)曾说,“在a、b和a+b的素数因子之间存在着更深层的关联”。

『捌』 现在有人看懂 abc 猜想的证明了吗

q(4, 127, 131) = log(131) / log(rad(4·127·131)) = log(131) / log(2·127·131) = 0.46820...

q(3, 125, 128) = log(128) / log(rad(3·125·128)) = log(128) / log(30) = 1.426565...

q(a,b,c) < 1,而q>1之情况实属少见,此时这些数的因数中存在着小素数的高次幂。



已知存在无限多的三元组:

满足a、b、c是互素正整数,a+b=c,而且q(a,b,c)> 1,然而(这个猜想想要表述的就是),在q>1.01,q>1.001,q>1.0001甚至q离1更近时,三元组却是有限多的。要特别说明的是,如果这个猜想是真的。