⑴ 统计相关分析中相关系数及p值的意义
相关系数就是两个变量之间的相关程度,-1<0负相关,r>0正相关,r2越接近1表示越相关。
P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 0.05 为显著, P<0.01 为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05 或0.01。
在线性回归中,p<0.01(或者0.05)表示两个变量非常显著(显著)线性相关。
需要注意的是:在非线性回归中,不可以用p值检验相关显著性, 因为在非线性回归中,残差均值平方不再是误差方差的无偏估计,因而不能使用线性模型的检验方法来检验非线性模型,从而不能用F统计量及其P值进行检验。
复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。
⑵ 相关系数与相关指数的区别
相关系数与相关指数的区别为:表示不同、取值范围不同、顺序不同。
一、表示不同
1、相关系数:相关系数是用以反映变量之间相关关系密切程度的统计指标。
2、相关指数:相关指数表示一元多项式回归方程拟合度的高低,或者说表示一元多项式回归方程估测的可靠程度的高低。
二、取值范围不同
1、相关系数:相关系数的取值范围为[-1,1],越接近1,说明存在线性关系,相关程度越高。
2、相关指数:相关指数的取值范围为[0,1],越接近1,说明实际观测点离样本线越近,拟合优度越高。
三、顺序不同
1、相关系数:先求相关系数,分析相关性的强弱。
2、相关指数:分析相关性的强弱后,然后求回归方程,最后求出相关指数,分析模型的拟合效果。
⑶ 相关性分析的概念及方法
相关分析就是根据一个因素(变量)与另一个因素(变量)的相关系数是否大于临界值,判断两个因素是否相关。在相关的因素之间,根据相关系数大小判断两个因素关系的密切程度,相关系数越大,说明两者关系越密切(何晓群,2002)。这种方法从总体上对问题可以有一个大致认识,但却很难在错综复杂的关系中把握现象的本质,找出哪些是主要因素,哪些是次要因素,有时甚至得出错误结论。为此,提出使用数学上的偏相关分析与逐步回归相结合的办法来解决这类问题。
偏相关性分析基本原理是,若众多因素都对某一因素都存在影响,当分析某一因素的影响大小时,把其他因素都限制在某一水平范围内,单独分析该因素对某一因素所带来的影响,从而消除其他因素带来的干扰。比如分析压实作用(或埋深)对孔隙度和渗透率的影响时,便把岩石成分、粒度、胶结类型等都限制在一定范围来单独讨论压实作用,而数学上的偏相关分析恰恰就是解决这类问题的方法,偏相关系数的大小就代表了这种影响程度。结合多因素边引入、边剔除的逐步回归分析方法,也可消除多个因素(自变量)间的相互干扰和多个因素对因变量的重复影响,保留其中的有用信息,挑选出对因变量影响较显著的因素,剔除了一些次要因素,被挑选出的主要因素的标准回归系数和偏回归平方和的大小反映了各参数对因变量(充满度)的影响大小。因此根据各因素(自变量)与因变量间的偏相关系数大小,结合标准回归系数和偏回归平方和,便可以将各因素对因变量的影响大小进行定量排序。其基本步骤如下:
第一步,找出所有可能对因变量产生影响的因素(或参数),同时对一些非数值型参数进行量化处理;
第二步,计算因变量与各参数间的简单相关系数,根据这些简单相关系数的大小,初步分析它们与因变量间的简单相关关系;
第三步,计算因变量与各参数间的偏相关系数、标准回归系数和偏回归平方和;
第四步,根据偏相关系数的大小,再结合标准回归系数和偏回归平方和,综合分析因变量与各参数间的关系密切程度,其值越大,关系越密切,影响越大,反之亦然。
⑷ 回归分析中相关指数和相关系数有什么联系与区别
在线性回归有,有上述关系.即:R^2=r^2
在其实回归模型中不一定适用。
R^2表达的是解释变量对总偏差平方和的贡献度,强调的是“几个模型”之间的拟合度的好与坏。
r表示解释变量与预报变量之间线性相关性的强弱程度,用来判断是否具有线性相关性。
回归系数b乘以X和Y变量的标准差之比结果为相关系数r。即b*σx/σy=r
相关系数和回归系数的联系和区别如下:
首先,相关系数与回归系数的方向,即符号相同。回归系数与相关系数的正负号都有两变量离均差积之和的符号业决定,所以同一资料的b与其r的符号相同。回归系数有单位,形式为(应变量单位/自变量单位)相关系数没有单位。相关系数的范围在-1~+1之间,而回归系数没有这种限制。
回归系数是指在回归方程中表示自变量x
对因变量y
影响大小的参数。回归系数越大表示x
对y
影响越大,正回归系数表示y
随x
增大而增大,负回归系数表示y
随x增大而减小。回归方程式^Y=bX+a中之斜率b,称为回归系数,表X每变动一单位,平均而言,Y将变动b单位。
⑸ SPSS相关系数分析的问题
其实,0.658已经不小了。是否多重共线,最好的用SPSS进行专门检验。
⑹ 做相关分析的时候,不知道应该选什么相关系数,请问应该怎么选择
相关分析是对两个对等的经济数列,用数学方法测定一个反映它们之间变动的联系程度和联系方向的抽象化数值,即相关系数。相关分析要求两个变量都必须是随机的。
如,销售收入与销售利润可以作为一对相关分析的变量。考察两个变量之间的关系,如果是同方向且同步,即正比例关系;如果仅为同方向但幅度(系数)有差异,即正相关;如果收入增长但利润下降,即反相关或负相关。
再如,劳动生产率和工资增长速度,这也可以称为一对相关性分析指标。劳动生产率的增长应该与工资增长呈正相关或正比例,而如果是负相关,就有问题了,不是吃光分光就是人才流失。
总之,只要具有关联性的两个变量,都可以做为相关系数。相关性分析应依据分析目的选择系数(分析对象),同时相关分析是几组数据,单一的一组数据是无法测量其趋势的(相关与否和相关程度)。
⑺ 相关系数多少算具有相关性
相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
相关系数r的绝对值一般在0.8以上,认为A和B有强的相关性。0.3到0.8之间,可以认为有弱的相关性。0.3以下,认为没有相关性。
(7)相关系数分析扩展阅读
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
⑻ spss相关性分析 相关性
一般直接看相关系数和显著性双侧。你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推。只要是显著性<0.05即可说明两变量具有相关性,而相关性的大小取决于相关系数,相关系数越接近1,相关性越好。看了一下你的x1和x4-x8的相关系数都在0.9以上了。是非常好的。
⑼ EXCEL中的相关系数能说明什么
相关系数与0越接近,说明两者越不相关。
例如,算出电视与温度的相关系数最接近0,说明电视一般不受温度的影响。
空调的结果与1更接近,说明空调与温度呈现正相关关系,温度越高,销售的空调就越多;反之亦然。而电热毯,则是反相关关系,温度越高,销售的就越少,温度越低,销售的就越多。
公式说明:
Correl(数组1,数组2):返回两组数组之间的相关系数,使用相关系数可以确定两种属性之间的关系。返回平均温度与空调之间的相关系数,通过这个相关系数,分析温度与空调之间的关系。
(9)相关系数分析扩展阅读
使用相关系数的缺点:
需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。
因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。由于研究对象的不同,相关系数有如下几种定义方式。
⑽ 用SPSS相关性分析后的结果怎么看
1、首先将数据导入到SPSS工具中,并打开相关的数据,保证导入的数据类型为Excel类型。