當前位置:首頁 » 公司股票 » plugpower公司的股票
擴展閱讀
明年買股票後年買房 2025-09-11 19:26:58
股票策略平台招商 2025-09-11 19:15:58
離婚七年癢 2025-09-11 19:14:51

plugpower公司的股票

發布時間: 2021-11-25 11:41:35

❶ 華碩筆記本電腦開機後會出現please plug in AC Adapter

建議按照提示 插上電源適配器,然後看下是否可以正常使用。

一般情況是機器在上一次關機前有自動下載BIOS文件,此次開機是 自動更新BIOS文件。

❷ 燃料電池的發展和應用

編輯本段國際發展狀況
燃料電池
發達國家都將大型燃料電池的開發作為重點研究項目,企業界也紛紛斥以巨資,從事燃料電池技術的研究與開發,現在已取得了許多重要成果,使得燃料電池即將取代傳統發電機及內燃機而廣泛應用於發電及汽車上。值得注意的是這種重要的新型發電方式可以大大降低空氣污染及解決電力供應、電網調峰問題,2MW、4.5MW、11MW成套燃料電池發電設備已進入商業化生產,各等級的燃料電池發電廠相繼在一些發達國家建成。燃料電池的發展創新將如百年前內燃機技術突破取代人力造成工業革命,也像電腦的發明普及取代人力的運算繪圖及文書處理的電腦革命,又如網路通訊的發展改變了人們生活習慣的信息革命。燃料電池的高效率、無污染、建設周期短、易維護以及低成本的潛能將引爆21世紀新能源與環保的綠色革命。如今,在北美、日本和歐洲,燃料電池發電正以急起直追的勢頭快步進入工業化規模應用的階段,將成為21世紀繼火電、水電、核電後的第四代發電方式。燃料電池技術在國外的迅猛發展必須引起我們的足夠重視,現在它已是能源、電力行業不得不正視的課題。 磷酸型燃料電池(PAFC) 燃料電池
受1973年世界性石油危機以及美國PAFC研發的影響,日本決定開發各種類型的燃料電池,PAFC作為大型節能發電技術由新能源產業技術開發機構(NEDO)進行開發。自1981年起,進行了1000kW現場型PAFC發電裝置的研究和開發。1986年又開展了200kW現場性發電裝置的開發,以適用於邊遠地區或商業用的PAFC發電裝置。 富士電機公司是目前日本最大的PAFC電池堆供應商。截至1992年,該公司已向國內外供應了17套PAFC示範裝置,富士電機在1997年3月完成了分散型5MW設備的運行研究。作為現場用設備已有50kW、100kW及500kW總計88種設備投入使用。下表所示為富士電機公司已交貨的發電裝置運行情況,到1998年止有的已超過了目標壽命4萬小時。 東芝公司從70年代後半期開始,以分散型燃料電池為中心進行開發以後,將分散電源用11MW機以及200kW機形成了系列化。11MW機是世界上最大的燃料電池發電設備,從1989年開始在東京電力公司五井火電站內建造,1991年3月初發電成功後,直到1996年5月進行了5年多現場試驗,累計運行時間超過2萬小時,在額定運行情況下實現發電效率43.6%。在小型現場燃料電池領域,1990年東芝和美國IFC公司為使現場用燃料電池商業化,成立了ONSI公司,以後開始向全世界銷售現場型200kW設備"PC25"系列。PC25系列燃料電池從1991年末運行,到1998年4月,共向世界銷售了174台。其中安裝在美國某公司的一台機和安裝在日本大阪梅田中心的大阪煤氣公司2號機,累計運行時間相繼突破了4萬小時。從燃料電池的壽命和可靠性方面來看,累計運行時間4萬h是燃料電池的長遠目標。東芝ONSI已完成了正式商用機PC25C型的開發,早已投放市場。PC25C型作為21世紀新能源先鋒獲得日本通商產業大獎。從燃料電池商業化出發,該設備被評價為具有高先進性、可靠性以及優越的環境性設備。它的製造成本是$3000/kW,近期將推出的商業化PC25D型設備成本會降至$1500/kW,體積比PC25C型減少1/4,質量僅為14t。明年即2001年,在中國就將迎來第一座PC25C型燃料電池電站,它主要由日本的MITI(NEDO)資助的,這將是我國第一座燃料電池發電站。 PAFC作為一種中低溫型(工作溫度180-210℃)燃料電池,不但具有發電效率高、清潔、無噪音等特點,而且還可以熱水形式回收大部分熱量。下表給出先進的ONSI公司PC25C型200kWPAFC的主要技術指標。最初開發PAFC是為了控制發電廠的峰谷用電平衡,近來則側重於作為向公寓、購物中心、醫院、賓館等地方提供電和熱的現場集中電力系統。 PAFC用於發電廠包括兩種情形:分散型發電廠,容量在10-20MW之間,安裝在配電站;中心電站型發電廠,容量在100MW以上,可以作為中等規模熱電廠。PAFC電廠比起一般電廠具有如下優點:即使在發電負荷比較低時,依然保持高的發電效率;由於採用模塊結構,現場安裝簡單,省時,並且電廠擴容容易。 質子交換膜燃料電池(PEMFC) 著名的加拿大Ballard公司在PEMFC技術上全球領先,現在它的應用領域從交通工具到固定電站,其子公司BallardGenerationSystem被認為在開發、生產和市場化零排放質子交換膜燃料電池上處於世界領先地位。BallardGenerationSystem最初產品是250kW燃料電池電站,其基本構件是Ballard燃料電池,利用氫氣(由甲醇、天然氣或石油得到)、氧氣(由空氣得到)不燃燒地發電。Ballard公司正和世界許多著名公司合作以使BallardFuelCell商業化。BallardFuelCell已經用於固定發電廠:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同組建了BallardGenerationSystem,共同開發千瓦級以下的燃料電池發電廠。經過5年的開發,第一座250kW發電廠於1997年8月成功發電,1999年9月送至IndianaCinergy,經過周密測試、評估,並提高了設計的性能、降低了成本,這導致了第二座電廠的誕生,它安裝在柏林,250kW輸出功率,也是在歐洲的第一次測試。很快Ballard公司的第三座250kW電廠也在2000年9月安裝在瑞士進行現場測試,緊接著,在2000年10月通過它的夥伴EBARABallard將第四座燃料電池電廠安裝在日本的NTT公司,向亞洲開拓了市場。在不同地區進行的測試將大大促進燃料電池電站的商業化。第一個早期商業化電廠將在2001年底面市。下圖是安裝在美國Cinergy的Ballard燃料電池裝置,目前正在測試。 圖是安裝在柏林的250kW PEMFC燃料電池電站: 在美國,PlugPower公司是最大的質子交換膜燃料電池開發公司,他們的目標是開發、製造適合於居民和汽車用經濟型燃料電池系統。1997年,PlugPower模塊第一個成功地將汽油轉變為電力。最近,PlugPower公司開發出它的專利產品PlugPower7000居民家用分散型電源系統。商業產品在2001年初推出。家用燃料電池的推出將使核電站、燃氣發電站面臨挑戰,為了推廣這種產品,1999年2月,PlugPower公司和GEMicroGen成立了合資公司,產品改稱GEHomeGen7000,由GEMicroGen公司負責全球推廣。此產品將提供7kW的持續電力。GE/Plug公司宣稱其2001年初售價為$1500/kW。他們預計5年後,大量生產的燃料電池售價將降至$500/kW。假設有20萬戶家庭各安裝一個7kW的家用燃料電池發電裝置,其總和將接近一個核電機組的容量,這種分散型發電系統可用於尖峰用電的供給,又因分散式系統設計增加了電力的穩定性,即使少數出現了故障,但整個發電系統依然能正常運轉。 在Ballard公司的帶動下,許多汽車製造商參加了燃料電池車輛的研製,例如:Chrysler(克萊斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大眾)和Volvo(富豪)等,它們許多正在使用的燃料電池都是由Ballard公司生產的,同時,它們也將大量的資金投入到燃料電池的研製當中,克萊斯勒公司最近給Ballard公司注入4億5千萬加元用於開發燃料電池汽車,大大的促進了PEMFC的發展。1997年,Toyota公司就製成了一輛RAV4型帶有甲醇重整器的跑車,它由一個25kW的燃料電池和輔助干電池一起提供了全部50kW的能量,最高時速可以達到125km/h,行程可達500km。目前這些大的汽車公司均有燃料電池開發計劃,雖然現在燃料電池汽車商業化的時機還未成熟,但幾家公司已確定了開始批量生產的時間表,Daimler-Benz公司宣布,到2004年將年產40000輛燃料電池汽車。因而未來十年,極有可能達到100000輛燃料電池汽車。 PEMFC是一種新型、有遠大前途的燃料電池,經過從80年代初到現在的近20年的發展,質子交換膜燃料電池起了翻天覆地的變化。這種變化從其膜電極的演變過程可見一斑。膜電極是PEMFC的電化學心臟,正是因為它的變化,才使得PEMFC呈現了今天的蓬勃生機。早期的膜電極是直接將鉑黑與起防水、粘結作用的Tefion微粒混合後熱壓到質子交換膜上製得的。Pt載量高達10mg/cm2。後來,為增加Pt的利用率,使用了Pt/C催化劑,但Pt的利用率仍非常低,直到80年代中期,PEMFC膜電極的Pt載量仍高達4mg/cm2。80年代中後期,美國LosAlamos國家實驗室(LANL)提出了一種新方法,採用Nafion質子交換聚合物溶液浸漬Pt/C多孔氣體擴散電極,再熱壓到質子交換膜上形成膜電極。此法大大提高了Pt的利用率,將膜電極的載鉑量降到了0.4mg/cm2。1992年,LANL對該法進行了改進,使膜電極的Pt載量進一步降低到0.13mg/cm2。1995年印度電化學能量研究中心(CEER)採用噴塗浸漬法製得了Pt載量為0.1mg/cm2的膜電極,性能良好。據報道,現在LANL試驗的一些單電池中,膜電極上鉑載量已降到0.05mg/cm2。膜電極上鉑載量的減少,直接可以使燃料電池的成本降低,這就為其商品化的實現准備了條件。 熔融碳酸鹽燃料電池(MCFC) 50年代初,熔融碳酸鹽燃料電池(MCFC)由於其可以作為大規模民用發電裝置的前景而引起了世界范圍的重視。在這之後,MCFC發展的非常快,它在電池材料、工藝、結構等方面都得到了很大的改進,但電池的工作壽命並不理想。到了80年代,它已被作為第二代燃料電池,而成為近期實現兆瓦級商品化燃料電池電站的主要研究目標,研製速度日益加快。現在MCFC的主要研製者集中在美國、日本和西歐等國家。預計2002年將商品化生產。 美國能源部(DOE)去年已撥給固定式燃料電池電站的研究費用4420萬美元,而其中的2/3將用於MCFC的開發,1/3用於SOFC的開發。美國的MCFC技術開發一直主要由兩大公司承擔,ERC(EnergyResearchCorporation)(現為FuelCellEnergyInc.)和M-CPower公司。他們通過不同的方法建造MCFC堆。兩家公司都到了現場示範階段:ERC1996年已進行了一套設於加州聖克拉拉的2MW的MCFC電站的實證試驗,目前正在尋找3MW裝置試驗的地點。ERC的MCFC燃料電池在電池內部進行無燃氣的改質,而不需要單獨設置的改質器。根據試驗結果,ERC對電池進行了重新設計,將電池改成250kW單電池堆,而非原來的125kW堆,這樣可將3MW的MCFC安裝在0.1英畝的場地上,從而降低投資費用。ERC預計將以$1200/kW的設備費用提供3MW的裝置。這與小型燃氣渦輪發電裝置設備費用$1000/kW接近。但小型燃氣發電效率僅為30%,並且有廢氣排放和雜訊問題。與此同時,美國M-CPower公司已在加州聖迭戈的海軍航空站進行了250kW裝置的試驗,現在計劃在同一地點試驗改進75kW裝置。M-CPower公司正在研製500kW模塊,計劃2002年開始生產。 日本對MCFC的研究,自1981年"月光計劃"時開始,1991年後轉為重點,每年在燃料電池上的費用為12-15億美元,1990年政府追加2億美元,專門用於MCFC的研究。電池堆的功率1984年為1kW,1986年為10kW。日本同時研究內部轉化和外部轉化技術,1991年,30kW級間接內部轉化MCFC試運轉。1992年50-100kW級試運轉。1994年,分別由日立和石川島播磨重工完成兩個100kW、電極面積1m2,加壓外重整MCFC。另外由中部電力公司製造的1MW外重整MCFC正在川越火力發電廠安裝,預計以天然氣為燃料時,熱電效率大於45%,運行壽命大於5000h。由三菱電機與美國ERC合作研製的內重整30kWMCFC已運行了10000h。三洋公司也研製了30kW內重整MCFC。目前,石川島播磨重工有世界上最大面積的MCFC燃料電池堆,試驗壽命已達13000h。日本為了促進MCFC的開發研究,於1987年成立了MCFC研究協會,負責燃料電池堆運轉、電廠外圍設備和系統技術等方面的研究,現在它已聯合了14個單位成為日本研究開發主力。 歐洲早在1989年就制定了1個Joule計劃,目標是建立環境污染小、可分散安裝、功率為200MW的"第二代"電廠,包括MCFC、SOFC和PEMFC三種類型,它將任務分配到各國。進行MCFC研究的主要有荷蘭、義大利、德國、丹麥和西班牙。荷蘭對MCFC的研究從1986年已經開始,1989年已研製了1kW級電池堆,1992年對10kW級外部轉化型與1kW級內部轉化型電池堆進行試驗,1995年對煤制氣與天然氣為燃料的2個250kW系統進行試運轉。義大利於1986年開始執行MCFC國家研究計劃,1992-1994年研製50-100kW電池堆,義大利Ansodo與IFC簽定了有關MCFC技術的協議,已安裝一套單電池(面積1m2)自動化生產設備,年生產能力為2-3MW,可擴大到6-9MW。德國MBB公司於1992年完成10kW級外部轉化技術的研究開發,在ERC協助下,於1992年-1994年進行了100kW級與250kW級電池堆的製造與運轉試驗。現在MBB公司擁有世界上最大的280kW電池組體。 資料表明,MCFC與其他燃料電池比有著獨特優點: a.發電效率高比PAFC的發電效率還高; b.不需要昂貴的白金作催化劑,製造成本低; c.可以用CO作燃料; d.由於MCFC工作溫度600-1000℃,排出的氣體可用來取暖,也可與汽輪機聯合發電。若熱電聯產,效率可提高到80%; e.中小規模經濟性與幾種發電方式比較,當負載指數大於45%時,MCFC發電系統成本最低。與PAFC相比,雖然MCFC起始投資高,但PAFC的燃料費遠比MCFC高。當發電系統為中小規模分散型時,MCFC的經濟性更為突出; f.MCFC的結構比PAFC簡單。 固體氧化物燃料電池(SOFC) SOFC由用氧化釔穩定氧化鋯(YSZ)那樣的陶瓷給氧離子通電的電解質和由多孔質給電子通電的燃料和空氣極構成。空氣中的氧在空氣極/電解質界面被氧化,在空氣燃料之間氧的分差作用下,在電解質中向燃料極側移動,在燃料極電解質界面和燃料中的氫或一氧化碳反應,生成水蒸氣或二氧化碳,放出電子。電子通過外部迴路,再次返回空氣極,此時產生電能。 SOFC的特點如下: 由於是高溫動作(600-1000℃),通過設置底面循環,可以獲得超過60%效率的高效發電。 由於氧離子是在電解質中移動,所以也可以用CO、煤氣化的氣體作為燃料。 由於電池本體的構成材料全部是固體,所以沒有電解質的蒸發、流淌。另外,燃料極空氣極也沒有腐蝕。l動作溫度高,可以進行甲烷等內部改質。 與其他燃料電池比,發電系統簡單,可以期望從容量比較小的設備發展到大規模設備,具有廣泛用途。 在固定電站領域,SOFC明顯比PEMFC有優勢。SOFC很少需要對燃料處理,內部重整、內部熱集成、內部集合管使系統設計更為簡單,而且,SOFC與燃氣輪機及其他設備也很容易進行高效熱電聯產。下圖為西門子-西屋公司開發出的世界第一台SOFC和燃氣輪機混合發電站,它於2000年5月安裝在美國加州大學,功率220kW,發電效率58%。未來的SOFC/燃氣輪機發電效率將達到60-70%。 被稱為第三代燃料電池的SOFC正在積極的研製和開發中,它是正在興起的新型發電方式之一。美國是世界上最早研究SOFC的國家,而美國的西屋電氣公司所起的作用尤為重要,現已成為在SOFC研究方面最有權威的機構。 早在1962年,西屋電氣公司就以甲烷為燃料,在SOFC試驗裝置上獲得電流,並指出烴類燃料在SOFC內必須完成燃料的催化轉化與電化學反應兩個基礎過程,為SOFC的發展奠定了基礎。此後10年間,該公司與OCR機構協作,連接400個小圓筒型ZrO2-CaO電解質,試制100W電池,但此形式不便供大規模發電裝置應用。80年代後,為了開辟新能源,緩解石油資源緊缺而帶來的能源危機,SOFC研究得到蓬勃發展。西屋電氣公司將電化學氣相沉積技術應用於SOFC的電解質及電極薄膜制備過程,使電解質層厚度減至微米級,電池性能得到明顯提高,從而揭開了SOFC的研究嶄新的一頁。80年代中後期,它開始向研究大功率SOFC電池堆發展。1986年,400W管式SOFC電池組在田納西州運行成功。 1987年,又在日本東京、大阪煤氣公司各安裝了3kW級列管式SOFC發電機組,成功地進行連續運行試驗長達5000h,標志著SOFC研究從實驗研究向商業發展。進入90年代DOE機構繼續投資給西屋電氣公司6400餘萬美元,旨在開發出高轉化率、2MW級的SOFC發電機組。1992年兩台25kW管型SOFC分別在日本大阪、美國南加州進行了幾千小時實驗運行。從1995年起,西屋電氣公司採用空氣電極作支撐管,取代了原先CaO穩定的ZrO2支撐管,簡化了SOFC的結構,使電池的功率密度提高了近3倍。該公司為荷蘭Utilies公司建造100kW管式SOFC系統,能量總利用率達到75%,已經正式投入使用。目前,SiemensWestinghouse宣布有兩座250kWSOFC示範電廠很快將在挪威和加拿大的多倫多附近建成。下圖為西屋公司在荷蘭安裝的SOFC示範電廠,它可以提供110kW的電力和64kW的熱,發電效率達到46%,運行14000h。 燃料電池 編輯本段評估
燃料電池運行時必須使用流動性好的氣體燃料。低溫燃料電池要用氫氣,高溫燃料電池可以直接使用天然氣、煤氣。這種燃料的前景如何呢?我國的天然氣儲量是十分豐富的,現已探明陸地上儲量為1.9萬億m3,專家認為我國已探明天然氣儲量為30萬億m3。中國還將利用豐富的鄰國天然氣資源,俄羅斯西西伯利亞已探明天然氣儲量為38.6萬億m3,可向我國年供氣200~300億m3;俄羅斯的東西伯利亞已探明天然氣儲量3.13萬億m3,可向我國年供氣100~200億m3;俄遠東地區、薩哈林島探明天然氣儲量1萬億m3,可向我國東北年供氣100億m3以上。中亞地區的哈薩克、烏茲別克和土庫曼三國探明的天然氣儲量6.77萬億m3,可向外供氣300億m3。我國規劃在2010年以前鋪設天然氣管線9000km,屆時有望在全國形成「兩縱、兩橫、四樞紐、五氣庫」的格局,形成可靠的供氣系統。其中的兩縱是南北的輸氣干線,即薩哈林島--大慶--沈陽干線和伊爾庫茨克--北京--日照--上海輸氣干線。目前我國的生產能力約為300億m3/a,2010年為700億m3,2020年為1000~1100億m3。天然氣主要成分為CH4(佔90%左右),熱值高(每立方米天然氣熱值為8600~9500千卡),便於運輸,在3000公里的距離內運用管道輸送都是十經濟的。 半個世紀以來,世界大多數國家時早以完成了由煤炭時代向石油時代的轉換,正在向石油、天然氣時代過度。如1950年在世界能源結構中煤炭所佔的比例為57.5%,而到1996年則下降為26.9%,天然氣佔23.5%石油佔39%兩者共佔63%。能源界預測目前的消費量,石油只能再用20年,而天然氣則可用100年,為此稱21世紀是"天然氣世紀"。中國的能源工業也必將跟上世界能源消費潮流。 另外由於環保的需要和IGCC技術的推動,煤的大型氣化裝置技術已經過關。煤炭部門的有關專家介紹,目前的技術完全可以把煤轉換為氫氣,轉換效率可達80%,供給燃料電池作燃料,其效率要比常規熱動力裝置效率高得多。
編輯本段經濟性
燃料電池是一種正在逐步完善的能源利用方式。其投資正在不斷的降低,目前PEMFC的中國國外商業價格為$1500/kW,PAFC的價格為$3000/kW。中國國內富原公司公布其PEMFC接受訂貨的價格為10000元/kW。其他燃料電池國內暫無商業產品。 燃料電池發電與常規的火電投資比較不能單考慮電源投資,還應將長距離輸電、配電投資與廠用電、輸電能耗和兩種能源轉換裝置的效率考慮在內。如此來計算綜合投資大型的火電廠每千瓦約為1.3~1.5萬元。發電消耗的燃料為燃料電池的兩倍以上,按目前在中國天然氣最低市價(產地市價人民幣1元/m3)計算,當發電時間超過70000h以後,用燃料電池發電將比用傳統的熱機發電更經濟。在實際發電工程中還應考慮傳統的熱機發電佔地面積大,環境污染重的問題。隨著燃料電池發電技術的不斷完善,造價將不斷的降低,特別是在規模化生產後,其造價將大幅度的下降,有理由相信,不久的將來這種發電方式會對傳統熱機發電構成挑戰。
編輯本段展望
中國稀土資源豐富,發展MCFC和SOFC技術具有十分有利的條件。以天然氣和凈化煤氣為燃料的MCFC和SOFC發電效率高達55%~65%,而且還可提供優質余熱用於聯合循環發電,是一種優良的區域性供電電站。熱電聯供時,燃料利用率高達80%以上。專家們認為它與各種大型中心電站的關系,頗類似於個人電腦與大型中心計算機的關系,二者互為補充。二十一世紀,這種區域性、環境友好的、高效的發電技術有可能發展成為一種主要的供電方式。 最近日本提出2010年普及燃料電池的應用,並向發達歐美國家建議制定安全基準和通用規格。隨著其生產成本的降低,燃料電池也將在我國獲得快速的發展,它將對傳統的熱機發電構成有利的挑戰。展望其對電力系統的影響如下:
調峰能力增加
應用氫氣做燃料PEMFC已經商業化,在國外容量為3kW、5kW、7kW等熱電聯用的燃料電池正在源源不斷地進入家庭,數百kW的燃料電池正在源源不斷地進入旅館、飯店商廈等場所。這些電力裝置同小型光伏發電裝置一樣可以獨立發電,也可與電力網相連。為了獲得氫燃料,目前在非純氫燃料電池前均加了燃料改質器。據專家介紹,碳納米管儲氫技術已獲得突破,隨著其商業化的發展,實行家庭發電將像用煤氣灶與煤氣罐配合使用一樣方便,購一罐氫氣可以發電數月(3kg氫氣能量可以使一般轎車行駛500km)。在有煤
節約配電網的建設費用
中國有許多偏遠的山村和海島,遠離電網或處在電網的末端,用電量不大。從商業角度考慮,架設高電壓等級的線路是不合算的,但不架設又難以實現村村通電的目標。有了燃料電池,用當地生物質氣體為燃料,再配合當地的風能、太陽能等,就可以滿足當地的長期的電能需求。這樣可以使投資更加合理,又提高電網的經濟效益。
提高電網的安全性
電網均採用高壓長距離輸電的方式使偏僻山區的水電和坑口、路口以及海口處的火電輸送到負荷中心地帶。中外近年多次電網事故證明,在地震、水災、暴風、冰雪、雷電等自然災害面前,這種系統往往是十分脆弱的。而星羅棋布的燃料電池加入到電網中供電,將會大大提高電網的安全性。在某個遠距離的基本負荷電源跳閘時,燃料電池可以對電網起到一定的支承作用,保證重要用戶的電能需求。隨著MCFC、SOFC技術的突破、天然氣管線的鋪通和大型煤氣化技術的解決,屆時人們會看到,對於大規模的應用化石能源的電力系統來說,變長距離輸電為長距離輸氣,應用大中小相結合的各種燃料電池靠近負荷供電供熱會更經濟、更安全。
電網管理
燃料電池發電將增加管理的復雜性。一是燃料電池發的均是直流電,需變頻後入網,如此將需要對諧波進行控制;二是價格管理,每一個小的系統與電網均有電量交換,需要進行合理的價格管理,這與其他新能源入網問題一樣(如太陽能、風能、生物質能發電),入網電量小,管理量不小。

❸ 請問powerplug是什麼意思

插頭

❹ 每次電腦開機之前出現

安裝個魯大師,升級你的驅動

❺ 乞「電氣工程及其自動化」論文一篇,關於供電系統的即可(專科類),謝謝

題目:低壓網功率因數對供電企業的影響
系部:
專業:電氣工程及其自動化
姓名:
班級:
學號:
指導教師:
摘要
隨著我國電力的不斷發展,對於供用電的要求也越來越嚴格,它是我們日常生活中不可缺少的部分,是整個國民經濟的重要組成部分,它直接影響著工農業生產的發展和人民生活的提高,是當今社會經濟發展和人民群眾日常生活不可缺少的主要能源。對廣大供電企業來說,用戶功率因數的高低,直接關繫到電力網中的功率損耗和電能損耗,關繫到供電線路的電壓損失和電壓波動,而且關繫到節約用電和整個供電區域的供電質量,這是眾所周知的道理。因此,提高電力系統的功率因數,已成為電力工業中一個重要課題,而提高電力系統的功率因數,首先就要提高各用戶的功率因數。文中簡要集中探討了影響電網功率因數的主要因素以及低壓無功補償的幾種使用方法,以及確定無功補償容量從而提高電力系統功率因數的一般方法。
[關鍵詞] 功率因數 影響因素 補償方法 容量確定
目錄
一、緒論 4
二、主要內容: 6
1、影響功率因數的主要因素 6
1.1、電感性設備和電力變壓器是耗用無功功率的主要設備 6
1.2、供電電壓超出規定范圍也會對功率因數造成很大影響 7
1.3、電網頻率的波動也會對非同步電動機和變壓器的磁化無功功率造成一定的影響 7
2、低壓網的無功補償 8
2.1、低壓網無功補償的一般方法 8
2.1.1、 隨機補償 8
2.1.2、 隨器補償 8
2.1.3、跟蹤補償 9
2.2、 採用適當措施,設法提高系統自然功率因數 9
2.2.1、合理選用電動機 10
2.2.2、 提高非同步電動機的檢修質量 10
2.2.3、 採用同步電動機或非同步電動機同步運行補償 10
2.2.4、 正確選擇變壓器容量提高運行效益 11
3、 功率因數的人工補償 12
3.1、 變電站最常用的安裝並聯電容器組 12
3.2 並聯補償移相電容器,應滿足以下電壓和容量的要求 12
3.3 分相補償 13
三、結束語 14
四、參考文獻 15
一、緒論
許多用電設備均是根據電磁感應原理工作的,如配電變壓器、電動機等,它們都是依靠建立交變磁場才能進行能量的轉換和傳遞。為建立交變磁場和感應磁通而需要的電功率稱為無功功率,無功功率是恆量能量轉換規模的物理量;因此在供用電系統中除了需要有功電源外,還需要無功電源,兩者缺一不可。
在功率三角形中,有功功率P與視在功率S的比值,稱為功率因數COSφ,其計算公式為:COSφ=P/S
在電力網的運行中,功率因數反映了電源輸出的視在功率被有效利用的程度,我們希望的是功率因數越大越好。這樣電路中的無功功率可以降到最小,視在功率將大部分用來供給有功功率,從而提高電能輸送的功率。
用戶功率因數的高低,對於電力系統發、供、用電設備的充分利用,有著顯著的影響。無功功率補償,又叫就地補償,適當提高用戶的功率因數,不但可以充分的發揮發、供電設備的生產能力、減少線路損失、改善電壓質量,而且可以提高用戶用電設備的工作效率和為用戶本身節約電能。因此,對於全國廣大供電企業,不但可以減輕上一級電網補償的壓力,改善提高用戶功率因數,而且能夠有效地降低電能損失,減少用戶電費。其社會效益及經濟效益都會是非常顯著的。
二、主要內容:
1、影響功率因數的主要因素
1.1、電感性設備和電力變壓器是耗用無功功率的主要設備
大量的電感性設備,如非同步電動機、感應電爐、交流電焊機等設備是無功功率的主要消耗者。據有關的統計,在工礦企業所消耗的全部無功功率中,非同步電動機的無功消耗佔了60%~70%;而在非同步電動機空載時所消耗的無功又佔到電動機總無功消耗的60%~70%。所以要改善非同步電動機的功率因數就要防止電動機的空載運行並盡可能提高負載率。電力變壓器消耗的無功功率一般約為其額定容量的10%~15%,它的空載無功功率約為滿載時的1/3。因而,為了改善電力系統和企業的功率因數,變壓器不應空載運行或長期處於低負載運行狀態。
1.2、供電電壓超出規定范圍也會對功率因數造成很大影響
當供電電壓高於額定值的10%時,由於磁路飽和的影響,無功功率將增長得很快,據有關資料統計,當供電電壓為額定值的110%時,一般無功將增加35%左右。當供電電壓低於額定值時,無功功率也相應減少而使它們的功率因數有所提高。但供電電壓降低會影響電氣設備的正常工作。由Q=UI*Sin?推出Sin?=Q∕UI,所以,應當採取措施使電力系統的供電電壓盡可能保持穩定。
1.3、電網頻率的波動也會對非同步電動機和變壓器的磁化無功功率造成一定的影響
綜上所述,我們知道了影響電力系統功率因數的一些主要因素,因此我們要尋求一些行之有效的、能夠使低壓電力網功率因數提高的一些實用方法,使低壓網能夠實現無功的就地平衡,達到降損節能的效果。
2、低壓網的無功補償
2.1、低壓網無功補償的一般方法
低壓無功補償我們通常採用的方法主要有三種:隨機補償、隨器補償和跟蹤補償。下面簡單介紹這三種補償方式的適用范圍及使用該種補償方式的優缺點。
2.1.1、 隨機補償
隨機補償就是根據個別用電設備對無功的需要量將單台或多台低壓電容器組分散地與用電設備並接,它與用電設備共用一套斷路器。通過控制、保護裝置與電機同時投切。隨機補償適用於補償個別大容量且連續運行(如大中型非同步電動機)的無功消耗,以補勵磁無功為主。此種方式可較好地限制農網無功峰荷。
隨機補償的優點是:用電設備運行時,無功補償投入,用電設備停運時,補償設備也退出,不會造成無功倒送,而且不需頻繁調整補償容量。具有投資少、佔位小、安裝容易、配置方便靈活、維護簡單、事故率低等優點。
2.1.2、 隨器補償
隨器補償是指將低壓電容器通過低壓開關接在配電變壓器二次側,以無功補償配電變壓器空載無功的補償方式。配變在輕載或空載時的無功負荷主要是變壓器的空載勵磁無功,配變空載無功是農網無功負荷的主要部分,對於輕負載的配變而言,這部分損耗占供電量的比例很大,從而導致電費單價的增加,不利於電費的同網同價。
隨器補償的優點:接線簡單、維護管理方便、能有效地補償配變空載無功,限制農網無功基荷,使該部分無功就地平衡,從而提高配變利用率,降低無功網損,具有較高的經濟性,是目前無功補償中常用的手段之一。
2.1.3、跟蹤補償
跟蹤補償是指以無功補償投切裝置作為控制保護裝置,將低壓電容器組補償在大用戶0.4KV母線上的補償方式。適用於100KVA以上的專用配電用戶,可以替代隨機、隨器兩種補償方式,補償效果好。
跟蹤補償的優點是運行方式靈活,運行維護工作量小,比前兩種補償方式壽命相對延長、運行更可靠。但缺點是控制保護裝置復雜、首期投資相對較大。但當這三種補償方式的經濟性接近時,應優先選用跟蹤補償方式。
2.2、 採用適當措施,設法提高系統自然功率因數
提高自然功率因數是不需要任何補償設備投資,僅採取各種管理上或技術上的手段來減少各種用電設備所消耗的無功功率,這是一種最經濟的提高功率因數的方法。下面將對提高自然功率因數的措施做一些簡要的介紹。
2.2.1、合理選用電動機
合理選擇電動機,使其盡可能在高負荷率狀態下運行。在選擇電動機時,既要注意它們的機械特性,又要考慮它們的電氣指標。舉例說,三相非同步電動機(100KW)在空載時功率因數僅為0.11,1/2負載時約為0.72,而滿負載時可達0.86。所以核算負荷小於40%的感應電動機,應換以較小容量的電動機,並合理安排和調整工藝流程,改善運行方式,限制空載運轉。故從節約電能和提高功率因數的觀點出發,必須正確合理的選擇電動機的容量。
2.2.2、 提高非同步電動機的檢修質量
實驗表明,非同步電動機定子繞組匝數變動和電動機定、轉子間的氣隙變動是對非同步電動機無功功率的大小有很大影響。因此檢修時要特別注意不使電動機的氣隙增大,以免使功率因數降低。
2.2.3、 採用同步電動機或非同步電動機同步運行補償
由電機原理可知,同步電動機消耗的有功功率取決於電動機上所帶機械負荷的大小,而無功取決於轉子中的勵磁電流大小,在欠激狀態時,定子繞組向電網「吸取」無功,在過激狀態時,定子繞組向電網「送出」無功。因此,只要調節電機的勵磁電流,使其處於過激狀態,就可以使同步電機向電網「送出」無功功率,減少電網輸送給工礦企業的無功功率,從而提高了工礦企業的功率因數。非同步電動機同步運行就是將非同步電動機三相轉子繞組適當連接並通入直流勵磁電流,使其呈同步電動機運行狀態,這就是「非同步電動機同步化」。因而只要調節電機的直流勵磁電流,使其呈過激狀態,即可以向電網輸出無功,從而達到提高低壓網功率因數的目的。
2.2.4、 正確選擇變壓器容量提高運行效益
對於負載率比較低的變壓器,一般採取「撤、換、並、停」等方法,使其負載率提高到最佳值,從而改善電網的自然功率因數。如:對平均負荷小於30%的變壓器宜從電網上斷開,通過聯絡線提高負荷率。
通過以上一些提高加權平均功率因數和自然功率因數的敘述,或許我們已經對「功率因數」這個簡單的電力術語有了更深的了解和認識。知道了功率因數的提高對電力企業的深遠影響,下面我們將簡單介紹對用電設備進行人工補償的方式和對補償容量的確定方法。
3、 功率因數的人工補償
功率因數是工廠電氣設備使用狀況和利用程度的具有代表性的重要指標,也是保證電網安全、經濟運行的一項主要指標。供電企業僅僅依靠提高自然功率因數的辦法已經不能滿足工廠對功率因數的要求,工廠自身還需要裝設補償裝置,對功率因數進行人工補償。
3.1、 變電站最常用的安裝並聯電容器組

從上圖可以看出,在原來的電路中根據基爾霍夫定律,流入的電流等於流出的電流,但是並聯接入電容器,在相量圖中得知?角明顯小於原來的角,因此,能提高功率因數,提高線路電能傳輸能力,減少線路上的損耗。

3.2 並聯補償移相電容器,應滿足以下電壓和容量的要求
Ue?c≥Ug?c
nQg?c≥Qc
式中
Ue?c——電容器的額定電壓(KV)
Ug?c——電容器的工作電壓(KV)
n——並聯的電容器總數
Qg?c——電容器的工作容量(Kvar)
Qc——電容器的補償容量(Kvar)
3.3 分相補償
在民用建築中大量使用的是單相負荷,照明、空調等由於負荷變化的隨機性大,容易造成三相負載的嚴重不平衡,尤其是住宅樓在運行中三相不平衡更為嚴重。由於調節補償無功功率的采樣信號取自三相中的任意一相,造成未檢測的兩相要麼過補償,要麼欠補償。如果過補償,則過補償相的電壓升高,造成控制、保護元件等用電設備因過電壓而損壞;如果欠補償,則補償相的迴路電流增大,線路及斷路器等設備由於電流的增加而導致發熱被燒壞。這種情況下用傳統的三相無功補償方式,不但不節能,反而浪費資源,難以對系統的無功補償進行有效補償,補償過程中所產生的過、欠補償等弊端更是對整個電網的正常運行帶來了嚴重的危害。

對於三相不平衡及單相配電系統採用分相電容自動補償是解決上述問題的一種較好的辦法,其原理是通過調節無功功率參數的信號取自三相中的每一相,根據每相感性負載的大小和功率因數的高低進行相應的補償,對其它相不產生相互影響,故不會產生欠補償和過補償的情況。

三、結束語
本文淺談了功率因數對廣大供電企業的影響以及提高功率
因數所帶來的經濟效益和社會效益,尤其是最重要的線損(最為
重要的是降損,分為技術降損和管理降損),介紹了影響功率因
數的主要因素以及提高功率因數的一般方法,還闡述了如何確定
無功功率的補償容量及無功功率的三種人工補償的具體方式。我
們只有端正自己的認知態度,很好的去歸納,總結這些知識的重
要部分,做好自己的本質工作,並且能在此基礎上再更上一個台
階,用自己的實際行動,為供電事業貢獻出自己的微薄之力。

四、參考文獻
1、運新,《電監察》水利電力出版社
2、靳龍章 丁毓山,《網無功補償實用技術》國水利水電出版社

❻ 燃料電池的現狀

在中國的燃料電池研究始於1958年,原電子工業部天津電源研究所最早開展了MCFC的研究。70年代在航天事業的推動下,中國燃料電池的研究曾呈現出第一次高潮。其間中國科學院大連化學物理研究所研製成功的兩種類型的鹼性石棉膜型氫氧燃料電池系統(千瓦級AFC)均通過了例行的航天環境模擬試驗。1990年中國科學院長春應用化學研究所承擔了中科院PEMFC的研究任務,1993年開始進行直接甲醇質子交換膜燃料電池(DMFC)的研究。電力工業部哈爾濱電站成套設備研究所於1991年研製出由7個單電池組成的MCFC原理性電池。「八五」期間,中科院大連化學物理研究所、上海硅酸鹽研究所、化工冶金研究所、清華大學等國內十幾個單位進行了與SOFC的有關研究。到90年代中期,由於國家科技部與中科院將燃料電池技術列入"九五"科技攻關計劃的推動,中國進入了燃料電池研究的第二個高潮。在中國科學工作者在燃料電池基礎研究和單項技術方面取得了不少進展,積累了一定經驗。但是,由於多年來在燃料電池研究方面投入資金數量很少,就燃料電池技術的總體水平來看,與發達國家尚有較大差距。我國有關部門和專家對燃料電池十分重視,1996年和1998年兩次在香山科學會議上對中國燃料電池技術的發展進行了專題討論,強調了自主研究與開發燃料電池系統的重要性和必要性。近幾年中國加強了在PEMFC方面的研究力度。 2000年大連化學物理研究所與中科院電工研究所已完成30kW車用用燃料電池的全部試驗工作。北京富原公司也宣布,2001年將提供40kW的中巴燃料電池,並接受訂貨。科技部副部長徐冠華在EVS16屆大會上宣布,中國將在2000年裝出首台燃料電池電動車。此前參與燃料電池研究的有關概況如下:
1:PEMFC的研究狀況
中國最早開展PEMFC研製工作的是長春應用化學研究所,該所於1990年在中科院扶持下開始研究PEMFC,工作主要集中在催化劑、電極的制備工藝和甲醇外重整器的研製已製造出100WPEMFC樣機。1994年又率先開展直接甲醇質子交換膜燃料電池的研究工作。該所與美國CaseWesternReserve大學和俄羅斯氫能與等離子體研究所等建立了長期協作關系。 中國科學院大連化學物理所於1993年開展了PEMFC的研究,在電極工藝和電池結構方面做了許多工作,現已研製成工作面積為140cm2的單體電池,其輸出功率達0.35W/cm2。
復旦大學在90年代初開始研製直接甲醇PEMFC,主要研究聚苯並咪唑膜的制備和電極制備工藝。廈門大學與香港大學和美國的CaseWesternReserve大學合作開展了直接甲醇PEMFC的研究。
1994年,上海大學與北京石油大學合作研究PEMFC(「八五」攻關項目),主要研究催化劑、電極、電極膜集合體的制備工藝。
北京理工大學於1995年在兵器工業部資助下開始了PEMFC的研究,單體電池的電流密度為150mA/cm2。
中國科學院工程熱物理研究所於1994年開始研究PEMFC,主營使用計算傳熱和計算流體力學方法對各種供氣、增濕、排熱和排水方案進行比較,提出改進的傳熱和傳質方案。
天津電源研究所1997年開始PEMFC的研究,擬從國外引進1.5kW的電池,在解析吸收國外先進技術的基礎上開展研究。
1995年北京富原公司與加拿大新能源公司合作進行PEMFC的研製與開發,5kW的PEMFC樣機現已研製成功並開始接受訂貨。
2:MCFC的研究簡況
在中國開展MCFC研究的單位不太多。哈爾濱電源成套設備研究所在80年代後期曾研究過MCFC,90年代初停止了這方面的研究工作。
1993年中國科學院大連化學物理研究所在中國科學院的資助下開始了MCFC的研究,自製LiAlO2微粉,用冷滾壓法和帶鑄法制備出MCFC用的隔膜,組裝了單體電池,其性能已達到國際80年代初的水平。
90年代初,中國科學院長春應用化學研究所也開始了MCFC的研究,在LiAlO2微粉的制備方法研究和利用金屬間化合物作MCFC的陽極材料等方面取得了很大進展。
北京科技大學於90年代初在國家自然科學基金會的資助下開展了MCFC的研究,主要研究電極材料與電解質的相互作用,提出了用金屬間化合物作電極材料以降低它的溶解。
3:SOFC的研究簡況
最早開展SOFC研究的是中國科學院上海硅酸鹽研究所他們在1971年就開展了SOFC的研究,主要側重於SOFC電極材料和電解質材料的研究。80年代在國家自然科學基金會的資助下又開始了SOFC的研究,系統研究了流延法制備氧化鋯膜材料、陰極和陽極材料、單體SOFC結構等,已初步掌握了濕化學法制備穩定的氧化鋯納米粉和緻密陶瓷的技術。吉林大學於1989年在吉林省青年科學基金資助下開始對SOFC的電解質、陽極和陰極材料等進行研究組裝成單體電池,通過了吉林省科委的鑒定。1995年獲吉林省計委和國家計委450萬元人民幣的資助,先後研究了電極、電解質、密封和聯結材料等,單體電池開路電壓達1.18V,電流密度400mA/cm2,4個單體電池串聯的電池組能使收音機和錄音機正常工作。
1991年中國科學院化工冶金研究所在中國科學院資助下開展了SOFC的研究,從研製材料著手製成了管式和平板式的單體電池,功率密度達0.09W/cm2~0.12W/cm2,電流密度為150mA/cm2~180mA/cm2,工作電壓為0.60V~0.65V。1994年該所從俄羅斯科學院烏拉爾分院電化學研究所引進了20W~30W塊狀疊層式SOFC電池組,電池壽命達1200h。他們在分析俄羅斯疊層式結構、美國Westinghouse的管式結構和德國Siemens板式結構的基礎上,設計了六面體式新型結構,該結構吸收了管式不密封的優點,電池間組合採用金屬氈柔性聯結,並可用常規陶瓷製備工藝製作。
華南理工大學於1992年在國家自然科學基金會、廣東省自然科學基金、汕頭大學李嘉誠科研基金、廣東佛山基金共一百多萬元的資助下開始了SOFC的研究,組裝的管狀單體電池,用甲烷直接作燃料,最大輸出功率為4mW/cm2,電流密度為17mA/cm2,連續運轉140h,電池性能無明顯衰減。 發達國家都將大型燃料電池的開發作為重點研究項目,企業界也紛紛斥以巨資,從事燃料電池技術的研究與開發,已取得了許多重要成果,使得燃料電池即將取代傳統發電機及內燃機而廣泛應用於發電及汽車上。值得注意的是這種重要的新型發電方式可以大大降低空氣污染及解決電力供應、電網調峰問題,2MW、4.5MW、11MW成套燃料電池發電設備已進入商業化生產,各等級的燃料電池發電廠相繼在一些發達國家建成。燃料電池的發展創新將如百年前內燃機技術突破取代人力造成工業革命,也像電腦的發明普及取代人力的運算繪圖及文書處理的電腦革命,又如網路通訊的發展改變了人們生活習慣的信息革命。燃料電池的高效率、無污染、建設周期短、易維護以及低成本的潛能將引爆21世紀新能源與環保的綠色革命。如今,在北美、日本和歐洲,燃料電池發電正以急起直追的勢頭快步進入工業化規模應用的階段,將成為21世紀繼火電、水電、核電後的第四代發電方式。燃料電池技術在國外的迅猛發展必須引起我們的足夠重視,它已是能源、電力行業不得不正視的課題。
磷酸型燃料電池(PAFC)
受1973年世界性石油危機以及美國PAFC研發的影響,日本決定開發各種類型的燃料電池,PAFC作為大型節能發電技術由新能源產業技術開發機構(NEDO)進行開發。自1981年起,進行了1000kW現場型PAFC發電裝置的研究和開發。1986年又開展了200kW現場性發電裝置的開發,以適用於邊遠地區或商業用的PAFC發電裝置。 富士電機公司是日本最大的PAFC電池堆供應商。截至1992年,該公司已向國內外供應了17套PAFC示範裝置,富士電機在1997年3月完成了分散型5MW設備的運行研究。作為現場用設備已有50kW、100kW及500kW總計88種設備投入使用。下表所示為富士電機公司已交貨的發電裝置運行情況,到1998年止有的已超過了目標壽命4萬小時。
東芝公司從70年代後半期開始,以分散型燃料電池為中心進行開發以後,將分散電源用11MW機以及200kW機形成了系列化。11MW機是世界上最大的燃料電池發電設備,從1989年開始在東京電力公司五井火電站內建造,1991年3月初發電成功後,直到1996年5月進行了5年多現場試驗,累計運行時間超過2萬小時,在額定運行情況下實現發電效率43.6%。在小型現場燃料電池領域,1990年東芝和美國IFC公司為使現場用燃料電池商業化,成立了ONSI公司,以後開始向全世界銷售現場型200kW設備"PC25"系列。PC25系列燃料電池從1991年末運行,到1998年4月,共向世界銷售了174台。其中安裝在美國某公司的一台機和安裝在日本大阪梅田中心的大阪煤氣公司2號機,累計運行時間相繼突破了4萬小時。從燃料電池的壽命和可靠性方面來看,累計運行時間4萬h是燃料電池的長遠目標。東芝ONSI已完成了正式商用機PC25C型的開發,早已投放市場。PC25C型作為21世紀新能源先鋒獲得日本通商產業大獎。從燃料電池商業化出發,該設備被評價為具有高先進性、可靠性以及優越的環境性設備。它的製造成本是$3000/kW,將推出的商業化PC25D型設備成本會降至$1500/kW,體積比PC25C型減少1/4,質量僅為14t。2001年,在中國就將迎來第一座PC25C型燃料電池電站,它主要由日本的MITI(NEDO)資助的,這將是我國第一座燃料電池發電站。
質子交換膜燃料電池(PEMFC)
著名的加拿大Ballard公司在PEMFC技術上全球領先,它的應用領域從交通工具到固定電站,其子公司BallardGenerationSystem被認為在開發、生產和市場化零排放質子交換膜燃料電池上處於世界領先地位。BallardGenerationSystem最初產品是250kW燃料電池電站,其基本構件是Ballard燃料電池,利用氫氣(由甲醇、天然氣或石油得到)、氧氣(由空氣得到)不燃燒地發電。Ballard公司正和世界許多著名公司合作以使BallardFuelCell商業化。BallardFuelCell已經用於固定發電廠:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同組建了BallardGenerationSystem,共同開發千瓦級以下的燃料電池發電廠。經過5年的開發,第一座250kW發電廠於1997年8月成功發電,1999年9月送至IndianaCinergy,經過周密測試、評估,並提高了設計的性能、降低了成本,這導致了第二座電廠的誕生,它安裝在柏林,250kW輸出功率,也是在歐洲的第一次測試。很快Ballard公司的第三座250kW電廠也在2000年9月安裝在瑞士進行現場測試,緊接著,在2000年10月通過它的夥伴EBARABallard將第四座燃料電池電廠安裝在日本的NTT公司,向亞洲開拓了市場。在不同地區進行的測試將大大促進燃料電池電站的商業化。第一個早期商業化電廠將在2001年底面市。下圖是安裝在美國Cinergy的Ballard燃料電池裝置,正在測試。
圖是安裝在柏林的250kW PEMFC燃料電池電站:
在美國,PlugPower公司是最大的質子交換膜燃料電池開發公司,他們的目標是開發、製造適合於居民和汽車用經濟型燃料電池系統。1997年,PlugPower模塊第一個成功地將汽油轉變為電力。PlugPower公司開發出它的專利產品PlugPower7000居民家用分散型電源系統。商業產品在2001年初推出。家用燃料電池的推出將使核電站、燃氣發電站面臨挑戰,為了推廣這種產品,1999年2月,PlugPower公司和GEMicroGen成立了合資公司,產品改稱GEHomeGen7000,由GEMicroGen公司負責全球推廣。此產品將提供7kW的持續電力。GE/Plug公司宣稱其2001年初售價為$1500/kW。他們預計5年後,大量生產的燃料電池售價將降至$500/kW。假設有20萬戶家庭各安裝一個7kW的家用燃料電池發電裝置,其總和將接近一個核電機組的容量,這種分散型發電系統可用於尖峰用電的供給,又因分散式系統設計增加了電力的穩定性,即使少數出現了故障,但整個發電系統依然能正常運轉。 在Ballard公司的帶動下,許多汽車製造商參加了燃料電池車輛的研製,例如:Chrysler(克萊斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大眾)和Volvo(富豪)等,它們許多正在使用的燃料電池都是由Ballard公司生產的,同時,它們也將大量的資金投入到燃料電池的研製當中,克萊斯勒公司給Ballard公司注入4億5千萬加元用於開發燃料電池汽車,大大的促進了PEMFC的發展。1997年,Toyota公司就製成了一輛RAV4型帶有甲醇重整器的跑車,它由一個25kW的燃料電池和輔助干電池一起提供了全部50kW的能量,最高時速可以達到125km/h,行程可達500km。這些大的汽車公司均有燃料電池開發計劃,雖然燃料電池汽車商業化的時機還未成熟,但幾家公司已確定了開始批量生產的時間表,Daimler-Benz公司宣布,到2004年將年產40000輛燃料電池汽車。因而未來十年,極有可能達到100000輛燃料電池汽車。
熔融碳酸鹽燃料電池(MCFC)
50年代初,熔融碳酸鹽燃料電池(MCFC)由於其可以作為大規模民用發電裝置的前景而引起了世界范圍的重視。在這之後,MCFC發展的非常快,它在電池材料、工藝、結構等方面都得到了很大的改進,但電池的工作壽命並不理想。到了80年代,它已被作為第二代燃料電池,而成為實現兆瓦級商品化燃料電池電站的主要研究目標,研製速度日益加快。MCFC的主要研製者集中在美國、日本和西歐等國家。預計2002年將商品化生產。
美國能源部(DOE)2000年已撥給固定式燃料電池電站的研究費用4420萬美元,而其中的2/3將用於MCFC的開發,1/3用於SOFC的開發。美國的MCFC技術開發一直主要由兩大公司承擔,ERC(EnergyResearchCorporation)(現為FuelCellEnergyInc.)和M-CPower公司。他們通過不同的方法建造MCFC堆。兩家公司都到了現場示範階段:ERC1996年已進行了一套設於加州聖克拉拉的2MW的MCFC電站的實證試驗,正在尋找3MW裝置試驗的地點。ERC的MCFC燃料電池在電池內部進行無燃氣的改質,而不需要單獨設置的改質器。根據試驗結果,ERC對電池進行了重新設計,將電池改成250kW單電池堆,而非原來的125kW堆,這樣可將3MW的MCFC安裝在0.1英畝的場地上,從而降低投資費用。ERC預計將以$1200/kW的設備費用提供3MW的裝置。這與小型燃氣渦輪發電裝置設備費用$1000/kW接近。但小型燃氣發電效率僅為30%,並且有廢氣排放和雜訊問題。與此同時,美國M-CPower公司已在加州聖迭戈的海軍航空站進行了250kW裝置的試驗,計劃在同一地點試驗改進75kW裝置。M-CPower公司正在研製500kW模塊,計劃2002年開始生產。
日本對MCFC的研究,自1981年"月光計劃"時開始,1991年後轉為重點,每年在燃料電池上的費用為12-15億美元,1990年政府追加2億美元,專門用於MCFC的研究。電池堆的功率1984年為1kW,1986年為10kW。日本同時研究內部轉化和外部轉化技術,1991年,30kW級間接內部轉化MCFC試運轉。1992年50-100kW級試運轉。1994年,分別由日立和石川島播磨重工完成兩個100kW、電極面積1m2,加壓外重整MCFC。另外由中部電力公司製造的1MW外重整MCFC正在川越火力發電廠安裝,預計以天然氣為燃料時,熱電效率大於45%,運行壽命大於5000h。由三菱電機與美國ERC合作研製的內重整30kWMCFC已運行了10000h。三洋公司也研製了30kW內重整MCFC。石川島播磨重工有世界上最大面積的MCFC燃料電池堆,試驗壽命已達13000h。日本為了促進MCFC的開發研究,於1987年成立了MCFC研究協會,負責燃料電池堆運轉、電廠外圍設備和系統技術等方面的研究,它已聯合了14個單位成為日本研究開發主力。
歐洲早在1989年就制定了1個Joule計劃,目標是建立環境污染小、可分散安裝、功率為200MW的"第二代"電廠,包括MCFC、SOFC和PEMFC三種類型,它將任務分配到各國。進行MCFC研究的主要有荷蘭、義大利、德國、丹麥和西班牙。荷蘭對MCFC的研究從1986年已經開始,1989年已研製了1kW級電池堆,1992年對10kW級外部轉化型與1kW級內部轉化型電池堆進行試驗,1995年對煤制氣與天然氣為燃料的2個250kW系統進行試運轉。義大利於1986年開始執行MCFC國家研究計劃,1992-1994年研製50-100kW電池堆,義大利Ansodo與IFC簽定了有關MCFC技術的協議,已安裝一套單電池(面積1m2)自動化生產設備,年生產能力為2-3MW,可擴大到6-9MW。德國MBB公司於1992年完成10kW級外部轉化技術的研究開發,在ERC協助下,於1992年-1994年進行了100kW級與250kW級電池堆的製造與運轉試驗。現在MBB公司擁有世界上最大的280kW電池組體。
資料表明,MCFC與其他燃料電池比有著獨特優點:
a.發電效率高比PAFC的發電效率還高;
b.不需要昂貴的白金作催化劑,製造成本低;
c.可以用CO作燃料;
d.由於MCFC工作溫度600-1000℃,排出的氣體可用來取暖,也可與汽輪機聯合發電。若熱電聯產,效率可提高到80%;
e.中小規模經濟性與幾種發電方式比較,當負載指數大於45%時,MCFC發電系統成本最低。與PAFC相比,雖然MCFC起始投資高,但PAFC的燃料費遠比MCFC高。當發電系統為中小規模分散型時,MCFC的經濟性更為突出;
f.MCFC的結構比PAFC簡單。
固體氧化物燃料電池(SOFC)
SOFC由用氧化釔穩定氧化鋯(YSZ)那樣的陶瓷給氧離子通電的電解質和由多孔質給電子通電的燃料和空氣極構成。空氣中的氧在空氣極/電解質界面被氧化,在空氣燃料之間氧的分差作用下,在電解質中向燃料極側移動,在燃料極電解質界面和燃料中的氫或一氧化碳反應,生成水蒸氣或二氧化碳,放出電子。電子通過外部迴路,再次返回空氣極,此時產生電能。
SOFC的特點如下:
由於是高溫動作(600-1000℃),通過設置底面循環,可以獲得超過60%效率的高效發電。
由於氧離子是在電解質中移動,所以也可以用CO、煤氣化的氣體作為燃料。
由於電池本體的構成材料全部是固體,所以沒有電解質的蒸發、流淌。另外,燃料極空氣極也沒有腐蝕。l動作溫度高,可以進行甲烷等內部改質。
與其他燃料電池比,發電系統簡單,可以期望從容量比較小的設備發展到大規模設備,具有廣泛用途。
在固定電站領域,SOFC明顯比PEMFC有優勢。SOFC很少需要對燃料處理,內部重整、內部熱集成、內部集合管使系統設計更為簡單,而且,SOFC與燃氣輪機及其他設備也很容易進行高效熱電聯產。下圖為西門子-西屋公司開發出的世界第一台SOFC和燃氣輪機混合發電站,它於2000年5月安裝在美國加州大學,功率220kW,發電效率58%。未來的SOFC/燃氣輪機發電效率將達到60-70%。
被稱為第三代燃料電池的SOFC正在積極的研製和開發中,它是正在興起的新型發電方式之一。美國是世界上最早研究SOFC的國家,而美國的西屋電氣公司所起的作用尤為重要,現已成為在SOFC研究方面最有權威的機構。 早在1962年,西屋電氣公司就以甲烷為燃料,在SOFC試驗裝置上獲得電流,並指出烴類燃料在SOFC內必須完成燃料的催化轉化與電化學反應兩個基礎過程,為SOFC的發展奠定了基礎。此後10年間,該公司與OCR機構協作,連接400個小圓筒型ZrO2-CaO電解質,試制100W電池,但此形式不便供大規模發電裝置應用。80年代後,為了開辟新能源,緩解石油資源緊缺而帶來的能源危機,SOFC研究得到蓬勃發展。西屋電氣公司將電化學氣相沉積技術應用於SOFC的電解質及電極薄膜制備過程,使電解質層厚度減至微米級,電池性能得到明顯提高,從而揭開了SOFC的研究嶄新的一頁。80年代中後期,它開始向研究大功率SOFC電池堆發展。1986年,400W管式SOFC電池組在田納西州運行成功。
燃料電池
另外,美國的其它一些部門在SOFC方面也有一定的實力。位於匹茲堡的PPMF是SOFC技術商業化的重要生產基地,這里擁有完整的SOFC電池構件加工、電池裝配和電池質量檢測等設備,是目前世界上規模最大的SOFC技術研究開發中心。1990年,該中心為美國DOE製造了20kW級SOFC裝置,該裝置採用管道煤氣為燃料,已連續運行了1700多小時。與此同時,該中心還為日本東京和大阪煤氣公司、關西電力公司提供了兩套25kW級SOFC試驗裝置,其中一套為熱電聯產裝置。另外美國阿爾貢國家實驗室也研究開發了疊層波紋板式SOFC電池堆,並開發出適合於這種結構材料成型的澆注法和壓延法。使電池能量密度得到顯著提高,是比較有前途的SOFC結構。 在日本,SOFC研究是「月光計劃」的一部分。早在1972年,電子綜合技術研究所就開始研究SOFC技術,後來加入"月光計劃"研究與開發行列,1986年研究出500W圓管式SOFC電池堆,並組成1.2kW發電裝置。東京電力公司與三菱重工從1986年12月開始研製圓管式SOFC裝置,獲得了輸出功率為35W的單電池,當電流密度為200mA/cm2時,電池電壓為0.78V,燃料利用率達到58%。1987年7月,電源開發公司與這兩家公司合作,開發出1kW圓管式SOFC電池堆,並連續試運行達1000h,最大輸出功率為1.3kW。關西電力公司、東京煤氣公司與大阪煤氣公司等機構則從美國西屋電氣公司引進3kW及2.5kW圓管式SOFC電池堆進行試驗,取得了滿意的結果。從1989年起,東京煤氣公司還著手開發大面積平板式SOFC裝置,1992年6月完成了100W平板式SOFC裝置,該電池的有效面積達400cm2。現Fuji與Sanyo公司開發的平板式SOFC功率已達到千瓦級。另外,中部電力公司與三菱重工合作,從1990年起對疊層波紋板式SOFC系統進行研究和綜合評價,研製出406W試驗裝置,該裝置的單電池有效面積達到131cm2。
在歐洲早在70年代,聯邦德國海德堡中央研究所就研究出圓管式或半圓管式電解質結構的SOFC發電裝置,單電池運行性能良好。80年代後期,在美國和日本的影響下,歐共體積極推動歐洲的SOFC的商業化發展。德國的Siemens、DomierGmbH及ABB研究公司致力於開發千瓦級平板式SOFC發電裝置。Siemens公司還與荷蘭能源中心(ECN)合作開發開板式SOFC單電池,有效電極面積為67cm2。ABB研究公司於1993年研製出改良型平板式千瓦級SOFC發電裝置,這種電池為金屬雙極性結構,在800℃下進行了實驗,效果良好。現正考慮將其製成25~100kW級SOFC發電系統,供家庭或商業應用。