當前位置:首頁 » 股市行情 » 期權定價模型股票價格期權價格
擴展閱讀
怎麼看股票哪個基金持有 2025-08-21 10:38:43
上海a股大盤股票行情 2025-08-21 10:31:23
光准文化股票行情 2025-08-21 09:50:36

期權定價模型股票價格期權價格

發布時間: 2022-02-23 00:40:00

Ⅰ 股票期權定價和行權價格是一個概念么

股票期權定價和行權價格不是一個概念。

行權價格是指經濟行為相關方行權時所支付或者獲得的金額。增長期權的行權價格是形成標的資產投資所需要的金額;退出期權的行權價格是標的資產在未來行權時間可以賣出的價格,或者在可以轉換用途情況下標的資產在行權時的價值。

期權定價,期權價值的兩個基本構成要素是:內含價值和時間價值。期權定價,內含價值,也稱內在價值,是期權持有人因通過行權獲得股票而不是直接購買股票而實現的收益。

(1)期權定價模型股票價格期權價格擴展閱讀:

行權價格和權證價格緊密相關,行權價格依附於權證而存在。對認沽權證來說,行權價格高於行權期證券價格時,權證有內在價值;對認購權證來說,行權價格低於證券價格時,權證有內在價值。

期權定價模型通過考慮預計股價的波動來假設未來股價的統計分布,由此估計未來股價的各種可能性。比如布萊克-斯科爾斯模型會假設股價服從對數正態分布。該假設認為股價的小幅波動比大幅波動可能性更大。股票波動性越大,市價具有較大增加幅度的可能性越高。

Ⅱ 什麼是期權定價模型

期權定價模型(OPM)----由布萊克與斯科爾斯在20世紀70年代提出。該模型認為,只有股價的當前值與未來的預測有關;變數過去的歷史與演變方式與未來的預測不相關 。模型表明,期權價格的決定非常復雜,合約期限、股票現價、無風險資產的利率水平以及交割價格等都會影響期權價格。

Ⅲ 二叉樹或者是布萊克斯科爾斯期權定價公式之間有什麼關系

關系:多期二叉樹期數越多,計算結果與布萊克-斯科爾斯模型的計算結果的差額越小。
二項式期權定價模型假設股票價格僅在向上和向下兩個方向波動,並且股票價格每次向上(或向下)波動的概率和幅度在整個調查期間保持不變。 模型將久期分為幾個階段,根據股價的歷史波動率模擬整個久期中正股所有可能的發展路徑,並計算出每條路徑上每個節點的權證行權收益和通過折現法計算的權證價格 . 對於美式權證,由於可以提前行權,每個節點權證的理論價格應該是權證行權收益和折現後的權證價格中的較大者。
拓展資料:
期權定價模型基於對沖投資組合的思想。投資者可以建立期權及其標的股票的組合,以確保報酬的確定。在均衡情況下,這種確定的回報必須獲得無風險利率。期權的固定價格思想與無套利定價思想是一致的。所謂無套利定價是指任何零投資的投資只能得到零回報,任何非零投資的投資只能得到與投資風險相對應的平均回報,而不能得到超額回報(利潤超過相當於風險的回報)。從 Black Scholes 期權定價模型的推導不難看出,期權定價本質上是無套利定價的。
假設條件:
1、標的資產價格服從對數正態分布;
2、在期權有效期內,金融資產的無風險利率和收益變數不變;
3、市場無摩擦,即沒有稅收和交易成本;
4、金融資產在期權有效期內沒有股息等收益(此假設後放棄);
5、該期權為歐式期權,即在期權到期前不能執行。
B-S模型只解決了不分紅股票的期權定價問題,默頓發展了B-S模型,使其亦運用於支付紅利的股票期權。(一)存在已知的不連續紅利假設某股票在期權有效期內某時間T(即除息日)支付已知紅利DT,只需將該紅利現值從股票現價S中除去,將調整後的股票價值S′代入B-S模型中即可:S′=S-DT E-rT。如果在有效期內存在其它所得,依該法一一減去。從而將B-S模型變型得新公式:C=(S- E-γT N(D1)-L E-γT N(D2)

Ⅳ 股票指數期權的定價公式

期權定價問題(Options Pricing)一直是理論界與實務界較為關注的熱點問題,同時也是開展期權交易所遇到的最為實際的關鍵問題。期權價格是期權合約中惟一的可變數,它通常由內涵價值與時間價值兩部分構成。而決定期權價格的主要因素包括以下幾方面:(1)履約價格的高低;(2)期權合約的有效期;(3 )期權標的物市場的趨勢;(4)標的物價格波動幅度;(5)利率的變化。股票指數期權價格的確定也是如此。
根據布萊克·修斯的期權定價模型, 可以分別得到歐式看漲股票指數期權和看跌股票指數期權的定價公式為:
c=se-q(T-t)N(d1)-xe-r(T-t)N(d2);
P=xe-r(T-t)N(-d2)N-se-q(T-t)N(-d1)。
其中 ln(SX)+(r-q+σ2/2)(T-t) ┌──
d1=───────────── ,d2=d1-σ│T-T
┌──
σ│T-t
S為股票指數期權的現貨價格,X為執行價格,T為到期日,r為無風險年利率,q為年股息率,σ為指數的年變化率即風險。
例如,以期限為兩個月的標准普爾500指數的歐式看漲期權,假定現行指數價格為310,期權的協議價格為300,無風險年利率為8%,指數的變化率年平均為20 %,預計第一個月和第二個月的指數平均股息率分別為0.2%和0.3%。將這些條件,即S=310,X=300,r=0.08,σ=0.2,T-T=0.1667,q=0.5%×6=0.03,代入以上的歐式看漲股票指數期權定價公式,可以得到d1=0.5444,d2=0.4628,N(d1)= 0.7069,N(d2)=0.6782,則C=17.28,即一份股票指數期權合約的成本為17.28 美元。

Ⅳ 期權定價是什麼意思 是指確定期權價格嗎比如說股票期權中購買股票應該支付的價格

期權定價即權利金,期權價格是由買賣雙方競價產生的。期權價格分成兩部分,即內涵價值和時間價值。期權價格=內涵價值+時間價值。
期權定價是通過期權定價模型給期權確定一個價格,就是確定期權的價格,不過通過模型定的價是一個理論價格,在二級市場上流通的期權價格要受供求雙方的影響。
http://blog.eastmoney.com/laoniu998

Ⅵ BS期權定價公式

Black-Scholes-Merton期權定價模型(Black-Scholes-Merton Option Pricing Model),即布萊克—斯克爾斯期權定價模型。
B-S-M定價公式
C=S·N(d1)-X·exp(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期權初始合理價格
X—期權執行價格
S—所交易金融資產現價
T—期權有效期
r—連續復利計無風險利率
σ—股票連續復利(對數)回報率的年度波動率(標准差)
N(d1),N(d2)—正態分布變數的累積概率分布函數,在此應當說明兩點:
第一,該模型中無風險利率必須是連續復利形式。一個簡單的或不連續的無風險利率(設為r0)一般是一年計息一次,而r要求為連續復利利率。r0必須轉化為r方能代入上式計算。兩者換算關系為:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,則r=LN(1+0.06)=0.0583,即100以583%的連續復利投資第二年將獲106,該結果與直接用r0=0.06計算的答案一致。
第二,期權有效期T的相對數表示,即期權有效天數與一年365天的比值。如果期權有效期為100天,則T=100/365=0.274。

Ⅶ 如何理解 Black-Scholes 期權定價模型

B-S-M模型假設

1、股票價格隨機波動並服從對數正態分布;

2、在期權有效期內,無風險利率和股票資產期望收益變數和價格波動率是恆定的;

3、市場無摩擦,即不存在稅收和交易成本;

4、股票資產在期權有效期內不支付紅利及其它所得(該假設可以被放棄);

5、該期權是歐式期權,即在期權到期前不可實施;

6、金融市場不存在無風險套利機會;

7、金融資產的交易可以是連續進行的;

8、可以運用全部的金融資產所得進行賣空操作。

B-S-M定價公式

C=S·N(d1)-X·exp(-r·T)·N(d2)

其中:

d1=[ln(S/X)+(r+0.5σ^2)T]/(σ√T)

d2=d1-σ·√T

C—期權初始合理價格

X—期權執行價格

S—所交易金融資產現價

T—期權有效期

r—連續復利計無風險利率

σ—股票連續復利(對數)回報率的年度波動率(標准差)

N(d1),N(d2)—正態分布變數的累積概率分布函數,在此應當說明兩點:

第一,該模型中無風險利率必須是連續復利形式。一個簡單的或不連續的無風險利率(設為r0)一般是一年計息一次,而r要求為連續復利利率。r0必須轉化為r方能代入上式計算。兩者換算關系為:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,則r=LN(1+0.06)=0.0583,即100以5.83%的連續復利投資第二年將獲106,該結果與直接用r0=0.06計算的答案一致。

第二,期權有效期T的相對數表示,即期權有效天數與一年365天的比值。如果期權有效期為100天,則T=100/365=0.274。

Ⅷ 期權定價模型的歷程

這些是開發好的 期權模型