❶ 幾何布朗運動
一、正態隨機變數概率密度函數描述:
(μ為總體均數、σ為標准差)
二、布朗運動的數學描述:
價格時間函數P(x),T+t時刻的價格P(T+t)與T時刻價格P(T)的差值:P(T+t)-P(T)是一個正態隨機變數,分布的平均期望值μt,標准差為。(T>0,t>0)
重大缺陷:
1、按此價格理論上可有負值,但實際中價格不可能存在負值。
2、不論價格初值為何值,固定時間長度的價格差具有相同的正態分布,不符合常理。
三、幾何布朗運動:
把價格差改為價格的漲跌幅:可以避免直接使用布朗運動描述價格的缺陷,即為幾何布朗運動。
是一個正態隨機變數,分布的平均期望值μt,標准差為。(T>0,t>0)
******************
幾何布朗運動
幾何布朗運動的作用是用來模擬股價的變動。它的好處在於,一般形式布朗運動中取值可能為負數,而幾何布朗運動取值永遠不小於0,這一點符合股價永遠不為負的特徵。
幾何布朗運動微分形式的表述。或者稱SDE(隨機微分方程)形式:
其中的S(t)可以理解為股價。
幾何布朗運動函數形式表述:
上述式子告訴我們,可以先生成一服從的一般形式布朗運動,然後求其指數函數,最後乘以S(0),即期初的股價,就可以得到幾何布朗運動。
補充:為何這里t的系數多出一項?具體可以參考伊藤公式。
歡迎求助 三個人的團兒!!!
❷ 證券價格服從漂移參數0.05,波動參數0.3的幾何布朗運動,當前價格為95,利率是4% 假設有種
後答案上默認為這個概率等於P[ln(S(0.5)/
❸ 研究衍生品的時候為什麼用幾何布朗運動來模擬股票價格的運行軌跡
其實很簡單,GBM(至少在一定程度上)符合人們對市場的觀察。例如,直觀的說,股票的價格看起來很像隨機遊走,再例如,股票價格不會為負,這樣起碼GBM比普通的布朗運動合適,因為後者是可以為負的。
再稍微復雜一點,對收益率做測試( S(t)/S(t-1) - 1)做測試,發現,哎居然還基本是個正態分布。收益率是正態的,股價就是GBM模型
總之,就是大家做了很多統計測試,發現假設成GBM還能很好的逼近真實數值,比較接近事實。所以就用這個。
其實將精確的數學模型應用到金融的時間非常短。最早是1952年的Markowitz portfolio selection. 那個其實就是一個簡單的優化問題。後來的CAPM APT等諸多模型,也僅僅研究的是一系列證券,他們之間回報、收益率以及其他影響因素關系,沒有涉及到對股價運動的描述。
第一次提出將股價是GBM應用在嚴格模型的是black-scholes model 。在這個模型中提出了若干個假設,其中一個就是股價是GBM的。
❹ 有關布朗運動和期權定價的問題,望大神解答!
布朗運動是將看起來連成一片的液體,在高倍顯微鏡下看其實是由許許多多分子組成的。液體分子不停地做無規則的運動,不斷地隨機撞擊懸浮微粒。當懸浮的微粒足夠小的時候,由於受到的來自各個方向的液體分子的撞擊作用是不平衡的。在某一瞬間,微粒在另一個方向受到的撞擊作用超強的時候,致使微粒又向其它方向運動,這樣,就引起了微粒的無規則的運動就是布朗運動。
期權定價模型(OPM)----由布萊克與斯科爾斯在20世紀70年代提出。該模型認為,只有股價的當前值與未來的預測有關;變數過去的歷史與演變方式與未來的預測不相關 。模型表明,期權價格的決定非常復雜,合約期限、股票現價、無風險資產的利率水平以及交割價格等都會影響期權價格。
❺ 幾何布朗運動的介紹
幾何布朗運動(GBM) (也叫做指數布朗運動) 是連續時間情況下的隨機過程,其中隨機變數的對數遵循布朗運動. 1幾何布朗運動在金融數學中有所應用,用來在布萊克-舒爾斯定價模型中模仿股票價格。
❻ 為什麼用幾何布朗運動描述股票價格
幾何布朗運動就是物理中典型的隨機運動,其特點就是不可預測,而在股市中的短期股票價格也是不可預測。
❼ 假設股票價格服從幾何布朗運動, 那麼裡面的sigma定義是什麼
定義是不是(S(t+dt)-S(t))/(S(t)*dt) 的standard deviation? 如果是這個,它的量綱就應該是t^-1, 不過從幾何布朗運動的模型中看的話又應該是t^-0.5, 因為dW是t^0.5的量綱才對.謝謝了!
❽ 幾何布朗運動的在金融中的應用
主條目:布萊克-舒爾斯模型
幾何布朗運動在布萊克-舒爾斯定價模型被用來定性股票價格,因而也是最常用的描述股票價格的模型 。
使用幾何布朗運動來描述股票價格的理由: 幾何布朗運動的期望與隨機過程的價格(股票價格)是獨立的, 這與我們對現實市場的期望是相符的 。 幾何布朗運動過程只考慮為正值的價格, 就像真實的股票價格。 幾何布朗運動過程與我們在股票市場觀察到的價格軌跡呈現了同樣的「roughness」 。 幾何布朗運動過程計算相對簡單。. 然而,幾何布朗運動並不完全現實,尤其存在一下缺陷: 在真實股票價格中波動隨時間變化 (possiblystochastically), 但是在幾何布朗運動中, 波動是不隨時間變化的。 在真實股票價格中, 收益通常不服從正態分布 (真實股票收益有更高的峰度('fatter tails'), 代表了有可能形成更大的價格波動).
❾ 為什麼市場充分有效時,股價會呈現隨機遊走的變動情況
您好,這取決於你在怎樣的時間粒度去看待有效市場理論。
假設市場完全有效,價格也不是憑空從一個價格跳轉到另一個價格,盡管在一個粗時間粒度上看起來是這樣。當你把時間粒度逐漸縮小,就可以價格是如何形成和變化的,這就是微觀市場理論的研究領域,也是一些投資機構設計高頻交易策略的基礎。
請採納。
❿ 幾何布朗運動和分數布朗運動有什麼區別
幾何布朗運動 (GBM) (也叫做指數布朗運動) 是連續時間情況下的隨機過程,其中隨機變數的對數遵循布朗運動,[1] also called aWiener process.幾何布朗運動在金融數學中有所應用,用來在布萊克-舒爾斯定價模型中模仿股票價格.
分數布朗運動
世界是非線性的,宇宙萬物絕大部分不是有序的、線性的、穩定的,而是混沌的、非線性的、非穩定和漲落不定的沸騰世界.有序的、線性的、穩定的只存在於我們自己構造的理論宮殿,而現實宇宙充滿了分形.在股票市場的價格波動、心率及腦波的波動、電子元器件中的雜訊、自然地貌等大量的自然現象和社會現象中存在著一類近乎全隨機的現象,它們具有如下特性:在時域或空域上有自相似性和長時相關性和繼承性;在頻域上,其功率譜密度在一定頻率范圍內基本符合1/f的多項式衰減規律.因此被稱為1/f族隨機過程.Benoit Mandelbrot和Van Ness 提出的分數布朗運動(fractional Brownian motion,FBM)模型是使用最廣泛的一種,它具有自相似性、非平穩性兩個重要性質,是許多自然現象和社會現象的內在特性.分數布朗運動被賦予不同的名稱,如分形布朗運動、有偏的隨機遊走(Biased Random walk)、分形時間序列(Fractional time serial)、分形維納過程等.