㈠ 研究衍生品的时候为什么用几何布朗运动来模拟股票价格的运行轨迹
其实很简单,GBM(至少在一定程度上)符合人们对市场的观察。例如,直观的说,股票的价格看起来很像随机游走,再例如,股票价格不会为负,这样起码GBM比普通的布朗运动合适,因为后者是可以为负的。
再稍微复杂一点,对收益率做测试( S(t)/S(t-1) - 1)做测试,发现,哎居然还基本是个正态分布。收益率是正态的,股价就是GBM模型
总之,就是大家做了很多统计测试,发现假设成GBM还能很好的逼近真实数值,比较接近事实。所以就用这个。
其实将精确的数学模型应用到金融的时间非常短。最早是1952年的Markowitz portfolio selection. 那个其实就是一个简单的优化问题。后来的CAPM APT等诸多模型,也仅仅研究的是一系列证券,他们之间回报、收益率以及其他影响因素关系,没有涉及到对股价运动的描述。
第一次提出将股价是GBM应用在严格模型的是black-scholes model 。在这个模型中提出了若干个假设,其中一个就是股价是GBM的。
㈡ 为什么用几何布朗运动描述股票价格
几何布朗运动就是物理中典型的随机运动,其特点就是不可预测,而在股市中的短期股票价格也是不可预测。
㈢ 怎样求解布朗运动的期望和方差
怎样求解布朗运动的期望和方差
布朗运动(Brownian motion)是一种正态分布的独立增量连续随机过程。它是随机分析中基本概念之一。其基本性质为:布朗运动W(t)是期望为0方差为t(时间)的正态随机变量。对于任意的r小于等于s,W(t)-W(s)独立于的W(r),且是期望为0方差为t-s的正态随机变量。可以证明布朗运动是马尔可夫过程、鞅过程和伊藤过程。
㈣ 请问如何用R语言做大量次数的几何布朗运动的模拟(参数μ,σ已知)
这上网搜应该搜的到吧,比如这篇文章"
股票价格行为关于几何布朗运动的模拟--基于中国上证综指的实证研究
",照着几何布朗运动的公式直接写代码应该就行了吧,代码逻辑都很清晰。
下面是照着这片文章模拟一次的代码,模拟多次的话,外面再套个循环应该就行了。然后再根据均方误差(一般用这个做准则的多)来挑最好的。
话说你的数据最好别是分钟或者3s切片数据,不然R这速度和内存够呛。
N <- 2000 #模拟的样本数
S0 <- 2000 #初始值
mu <- 0.051686/100
sigma <- 1.2077/100
St <- rep(0,N)
epsion <- rnorm(N,0,1) #正态分布随机数
for(i in 1:N) {
if(i == 1) {
delta_St <- mu * S0 + sigma * S0 * epsion[i]
St[i] <- S0 + delta_St
}else {
delta_St <- mu * St[i-1] + sigma * St[i-1] * epsion[i]
St[i] <- St[i-1] + delta_St
}
}
Final_St <- c(S0,St) #最终结果
plot(Final_St,type = "l")
㈤ 为什么股票价格服从对数正态分布
我们可以假设连续复利,用lnS1-lnS0来近似股票的收益(S1-S0)/S0,而且根据集合布朗运动可知,此收益是服从正态分布的。
㈥ 假设利率变动服从几何布朗运动,怎么求未来利率
既然是布朗运动,那利率的落点服从正态分布,也就是Random Walk,要求未来利率是不可能的,但可以求出利率落在那以区间内的概率是多少
㈦ 求教:如果标的股票价格不服从几何布朗运动,那么该权证怎么定价
你新手吧 看你研究的东西就是新手……
㈧ 假设股票价格服从几何布朗运动,若买一份股票,需要如何对冲
布朗运动没法对冲滴
㈨ 证券价格服从漂移参数0.05,波动参数0.3的几何布朗运动,当前价格为95,利率是4% 假设有种
后答案上默认为这个概率等于P[ln(S(0.5)/