当前位置:首页 » 股票资讯 » 电磁悬浮
扩展阅读
去啊旅行 2025-06-20 14:25:11
海印地产股票行情 2025-06-20 14:02:23

电磁悬浮

发布时间: 2021-12-21 01:31:50

① 磁悬浮的意思

随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。电磁悬浮技术(electromagnetic levitation)简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。

② 电磁悬浮5D是什么

卓影时代5D电磁悬浮座椅全球首创,专利认证,仅此一家。大大超越了目前市面上流行的气压和液压设备,从而引爆一场新的5D视觉盛宴。市面上出现了很多伪劣、假冒、山寨版电磁悬浮5D设备,请消费者认准卓影时代,以防被骗!

③ 磁悬浮电动机的原理是什

悬浮方式:

原理是当靠近金属的磁场改变,金属上的电子会移动,并且产生电流。第二个原理就是电流的磁效应。当电流在电线或一块金属中流动时,会产生磁场。通电的线圈就成了一块磁铁。磁浮的第三个原理我们就再熟悉不过了,磁铁间会彼此作用,同极性相斥,异极性相吸。

磁铁从一块金属的上方经过,金属上的电子因磁场改变而开始移动 (原理一)。电子形成回路,所以接着也产生了本身的磁场(原理二)。图 1 以最简单的方式来表达这个过程,移动中的磁铁使金属中出现一块假想的磁铁。

这块假想磁铁具有方向性,因是同极性相对,因此 会对原有的磁铁产生斥力。也就是说,如果原有的磁铁是北极在下,假想磁铁则是北极在上。

反之亦然。因为磁铁的同极相斥(原理三),让磁铁在一块金属上方移动,结果会对移动中的磁铁产生一股往上推动的力量。如果磁铁移动得足够快,这个力量会大得足以克服向下的重力,举起移动中的磁铁。 所以当磁铁移动时,会使得自己浮在金属上方,并靠着本身电子移动产生的力量保持浮力。

这个过程就是所谓的磁浮,这个原理可以适用在列车上。

扩展资料:

研制主要障碍

第一条铁路出现在1825年,经过160年努力,其运营速度才突破300公里/小时,由300公里/小时到380公里/小时又花了近30年,虽然技术还在完善与发展,继续提高速度的余地很大。还应注意到,350公里/小时高速铁路的造价比160公里/小时的高速铁路高近两倍,比120公里/小时的普通铁路高三倍。

与之相比世界上第一个磁悬浮列车的小型模型是1969年在德国出现的,日本是1972年造出的。可仅仅十年后的1979年,磁悬浮列车技术就创造了17公里/小时的速度纪录。技术还未成熟,可进入300公里/小时实用运营的建造阶段。

④ 谁知道电磁悬浮原理是什么

电磁悬浮原理是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。

目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。电磁悬浮技术(electromagnetic levitation)简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。

⑤ 什么是磁悬浮

磁悬浮是指利用磁力克服重力使物体悬浮的一种技术。

磁悬浮技术主要包括磁悬浮、光悬浮、声悬浮、气流悬浮、电悬浮、粒子束悬浮等,其中磁悬浮技术比较成熟。

磁悬浮技术实现形式比较多,主要可以分为系统自稳的被动悬浮和系统不能自稳的主动悬浮等。



磁悬浮的原理:

磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号。

然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。

⑥ 有哪些发明是运用主动电磁悬浮技术的

比较著名的磁悬浮列车就是例子。

⑦ 磁悬浮是怎么回事

转:资料
悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。

电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。
电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。

超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。
超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。其原理就像冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。
推进系统:磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就像是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就像同步直线电动机的长定子绕组。从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就像电机的"转子"一样被推动做直线运动。从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。
通俗的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈里流动的交流电的频率和电压。

推进系统可以分为两种。“长固定片”推进系统使用缠绕在导轨上的线性电动机作为高速磁悬浮列车的动力部分。由于高的导轨的花费而成本昂贵。而“短固定片”推进系统使用缠绕在被动的轨道上的线性感应电动机(LIM)。虽然短固定片系统减少了导轨的花费,但由于LIM过于沉重而减少了列成的有效负载能力,导致了比长固定片系统的高的运营成本和低的潜在收入。而采用非磁力性质的能量系统,也会导致机车重量的增加,降低运营效率。
导向系统:导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和斥力。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。

⑧ 简易的电磁悬浮装置怎么做,需要什么材料

简易的电磁悬浮装置怎么做,需要什么材料
自制磁悬浮方法:结合永磁铁和电磁铁,利用一个微控制器和一个IR感应器,当内部装有磁铁的小物体放在电磁铁的下方,IR感应器就会感应到物体的存在,微控制器就会启动电磁铁并调整磁力大小,当小物体受到向上的磁力和向下的重力相同时,它就会漂浮在空中,漂浮的位置和高度取决于重量和磁力大小。
悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。电磁悬浮技术(electromagnetic levitation)简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属的悬浮体。

⑨ 电磁悬浮技术和磁悬浮技术是否一个概念

一样啊
空间电磁悬浮技术简介
随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。

电磁悬浮技术(electromagnetic levitation )简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。

将一个金属样品放置在通有高频电流的线圈上时,高频电磁场会在金属材料表面产生一高频涡流,这一高频涡流与外磁场相互作用,使金属样品受到一个洛沦兹力的作用。在合适的空间配制下,可使洛沦兹力的方向与重力方向相反,通过改变高频源的功率使电磁力与重力相等,即可实现电磁悬浮。一般通过线圈的交变电流频率为104—105Hz。

同时,金属上的涡流所产生的焦耳热可以使金属熔化,从而达到无容器熔炼金属的目的。目前,在空间材料的研究领域, EML技术在微重力、无容器环境下晶体生长、固化、成核及深过冷问题的研究中发挥了重要的作用。
目前世界上有三种类型的磁悬浮。一是以德国为代表的常导电式磁悬浮,二是以日本为代表的超导电动磁悬浮,这两种磁悬浮都需要用电力来产生磁悬浮动力。而第三种,就是我国的永磁悬浮,它利用特殊的永磁材料,不需要任何其他动力支持。

中国到底有磁悬浮技术吗?
[编辑本段]

昨天,“中华01号”永磁悬浮路车模型在大连举行的2006中国国际专利技术与产品交易会上亮相。该模型是大连3000米永磁悬浮试验线路的仿真微缩,专为城市之间的区域交通设计。列车在高架的磁轨上运行,设计时速230公里,既可货运,又可客运,适用于大都市圈的交通运输。

据半岛晨报报道 只有在小说、科幻电影中才能见到的“空中悬浮”列车马上就要出现在大连人身边了。记者从昨日的专交会上了解到,3000米永磁悬浮试验线拟定年底在开发区建设。

昨日上午,在大连世界博览广场举办的“2006年中国国际专利技术与产品交易会”上,“中华01号”1/10槽轨永磁悬浮微缩路-车格外引人注目。该车按照1/10比例微缩,几何尺寸按实车微缩;路桥结构、轨道结构、车辆结构与悬浮功能为仿真微缩。在技术人员的操作下,悬浮在槽轨上的微缩列车十分轻巧“跑”起来,启动、刹车十分灵活并且悄无声息。

据了解,目前世界上有3种类型磁悬浮技术,即日本的超导电动磁悬浮、德国的常导电磁悬浮和中国的永磁悬浮。永磁悬浮技术是中国大连拥有核心及相关技术发明专利的原始创新技术。据技术人员介绍,日本和德国的磁悬浮列车在不通电的情况下,车体与槽轨是接触在一起的,而利用永磁悬浮技术制造出的磁悬浮列车在任何情况下,车体和轨道之间都是不接触的。

中国永磁悬浮与国外磁悬浮相比有五大方面的优势:一是悬浮力强。二是经济性好。三是节能性强。四是安全性好。五是平衡性稳定。

槽轨永磁悬浮是专为城市之间的区域交通设计的,列车在高架的槽轨上运行,设计时速230公里,既可客运,又可货运。大连磁谷科技研究所有限公司苏珣总经理告诉记者,3000米永磁悬浮列车线路预计在今年年底建设,地点拟定在开发区。
磁悬浮列车
磁悬浮列车利用“同性相斥,异性相吸”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹。

世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后,从浦东龙阳路站到浦东国际机场,三十多公里只需6~7分钟。

上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。是利用“异性相吸”原理设计,是一种吸力悬浮系统,利用安装在列车两侧转向架上的悬浮电磁铁,和铺设在轨道上的磁铁,在磁场作用下产生的吸力是车辆浮起来。

列车底部及两侧转向架的顶部安装电磁铁,在“工”字轨的上方和上臂部分的下方分别设反作用板和感应钢板,控制电磁铁的电流使电磁铁和轨道间保持1厘米的间隙,让转向架和列车间的吸引力与列车重力相互平衡,利用磁铁吸引力将列车浮起1厘米左右,使列车悬浮在轨道上运行。这必须精确控制电磁铁的电流。

悬浮列车的驱动和同步直线电动机原理一模一样。通俗说,在位于轨道两侧的线圈里流动的交流电,能将线圈变成电磁体,由于它于列车上的电磁体的相互作用,使列车开动。

列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N极,N极变成S极。循环交替,列车就向前奔驰。

稳定性由导向系统来控制。“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。
"常导型”磁悬浮列车的构想由德国工程师赫尔曼 肯佩尔于1922年提出。
“常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。
上海磁悬浮列车时速430公里,一个供电区内只能允许一辆列车运行,轨道两侧25米处有隔离网,上下两侧也有防护设备。转弯处半径达8000米,肉眼观察几乎是一条直线;最小的半径也达1300米。乘客不会有不适感。轨道全线两边50米范围内装有目前国际上最先进的隔离装置。上海线路将最终延伸到杭州。并且直接为世博会服务。
磁悬浮列车的优点
磁悬浮列车有许多优点:列车在铁轨上方悬浮运行,铁轨与车辆不接触,不但运行速度快,能超过500 千米/小时,而且运行平稳、舒适,易于实现自动控制;无噪音,不排出有害的废气,有利于环境保护;可节省建设经费;运营、维护和耗能费用低。它是21 世纪理想的超级特别快车,世界各国都十分重视发展磁悬浮列车。目前,我国和日本、德国、英、美等国都在积极研究这种车。日本的超导磁悬浮列车已经过载人试验,即将进入实用阶段,运行时速可达500 千米以上。
到目前可以讲,磁悬浮列车轨道技术在中国,磁悬浮列车技术仍在德国,引进产品是引进不来技术的。我国的轮轨铁路技术有近百年的历史,形成了专门从事机车设计、科研创新的产业大军,拥有数十年设计、制造、运营、维修配套的四十多万人的产业链。磁悬浮技术掌握在少数专家、教授手中,是不具备应用条件的。 磁悬浮列车需要高架,高架梁的绕度必须小于1毫米,因此,高架桥跨一般要小于25米,桥墩基础要深30米以上。因此,在上海到杭州的地面上要形成一道200多公里的挡墙。此外,由于运行动力学的影响,轨道两侧各100米内是不允许有其他建筑物的。修建沪杭磁悬浮,占地多,对环境影响比较大。
磁悬浮列车的缺点
2006年,德国磁悬浮控制列车在试运行途中与一辆维修车相撞,报道称车上共29人,当场死亡23人,实际死亡25人,4人重伤。这说明磁悬浮列车突然情况下的制动能力不可靠,不如轮轨列车。 在陆地上的交通工具没有轮子是很危险的。因为列车要从动量很大降到静止,要克服很大的惯性,只有通过轮子与轨道的制动力来克服。磁悬浮列车没有轮子,如果突然停电,靠滑动摩擦是很危险的。此外,磁悬浮列车又是高架的,发生事故时在5米高处救援很困难,没有轮子,拖出事故现场困难;若区间停电,其他车辆、吊机也很难靠近。