⑴ 什么叫均方差怎么计算均方差
设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。
由方差的定义可以得到以下常用计算公式:D(X)=E(X^2)-[E(X)]^2
方差的几个重要性质(设一下各个方差均存在)。
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。
(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
(1)均方差公式扩展阅读:
方差(Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。方差的算术平方根称为该随机变量的标准差。
方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。方差和标准差是测度数据变异程度的最重要、最常用的指标。
标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。
⑵ 均方差的公式
求均方差.均方差的公式如下:(xi为第i个元素).
S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根
⑶ Excel中怎么求均方差
用VARP(number1,number2,...)函数与SQRT函数
number1、2:可以是数据区域。例:在A6单元格输入:=SQRT(VARP(A1:A5))即计算:A1:A5区域均方差
⑷ excel 中有没有直接计算均方差的函数
excel 中有没有直接计算均方差的方法如下:
1、打开要处理的文档,
2、光标定位到显示结果的单元格,根据情况用sqrt和var这两个函数就可以。
3、例如求A1:A5的数值的均方差,公式可以这样写:=SQRT(VAR(A1:A5))
⑸ 统计的均方差公式
计算公式索引 相对数 公式(3.1) 公式(3.2) 公式(3.3) χ2检验 公式(3.4)理论频数 公式(3.5)χ2基本公式 公式(3.6)χ2自由度 ν=(R-1)(C-1) 公式(3.7)χ2校正的基本公式 公式(3.8)四格表专用公式 公式(3.9)四格表校正公式 公式(3.10)2×k表专用公式 公式(3.11) 公式(3.12)R×C表通用公式 中位数 公式(4.1)当n为奇数时 公式(4.2)当n为偶数时 公式(4.3)频数表上计算 公式(4.4) 百分位数 公式(4.5)频数表上计算 算术均数 公式(4.6) χ=(1/n)∑X 公式(4.7) χ=C+(1/n)(Xi-C) 公式(4.8) χa=Xa-1+(1/n)(Xa-Xa-1) 公式(4.9) χ=(1/n)∑fX 几何均数 公式(4.10) 公式(4.11) 四分位数间距 公式(4.12) Q=P75-P25 均差 公式(4.13) 标准差 公式(4.14) 样本标准差 公式(4.15) 递推计算 公式(4.16) 直接计算 公式(4.17) 变异系数 公式(4.18) CV=S/X×100%, X>0 正态曲线 公式(5.1) 正态曲线方程 (5.2) 正态离差 (5.3) 标准正态曲线 (5.4) 正常值范围 X±uαs 标准误 (6.1) 理论标准误 (6.2) 样本均数的标准误 (6.3) 率的标准误 (6.4) t分布 (6.5) 总体均数的估计 (6.6) 95%可信区间 X-t0.05,νSχ<μ0.05,ν Sχ (6.7) 99%可信区间 X-t0.01,ν Sχ<μ0.01,ν Sχ 总体率的估计 (6.8) 95%可信区间P-1.96Sp<π (6.9) 99%可信区间P-2.58Sp<π t检验 公式(6.5)样本均数与总体均数比较 公式(7.1) 两样本均数比较的自由度 ν=n1+n2-2 公式(7.2) 合并方差 公式(7.3) 两均数相差的标准误 公式(7.4) t检验 u检验 公式(7.5)两均数相关的标准误 u检验 公式(7.6)两样本率比较 公式(7.7) 公式(6.4) 正态性检验 公式(7.8) w检验 公式(7.9) 偏度系数 公式(7.10) 公式(7.11) 峰度系数 公式(7.12) 公式(7.13) g1的抽样误差 公式(7.14) g2的抽样误差 公式(7.15) g1的u检验 u1=g1/Sg1 公式(7.16) g2的u检验 u2=g2/Sg2 两方差齐性检验 公式(7.17) F=S12/S22,S1>S2 方差分析 公式(8.1) 总离均差平方和 公式(8.2) 组间离均差平方和 公式(8.3) 组内离均差平方和 公式(8.4) 总变异自由度 ν总=N-1 公式(8.5)组间变异自由度 ν组间=k-1 公式(8.6) 组内变异自由度 ν组内=N-k 公式(8.7) F检验F=组间均方/组内均方 多个均数间两两比较 公式(8.8) 最小显著相差Dα=t,νSA-B 公式(8.9) 两均数的标准误 公式(8.10) 平均例数 i=1,2,…,k 公式(8.11) 标准误 多个方差齐性检验 公式(8.12) 公式(8.13) 直线相关 公式(9.1) 直线相关系数 公式(9.2) 离均差积和 公式(9.3) 相关系数t检验 直线回归 公式(9.4) 直线回归方程 γ=a+bx 公式(9.5) 回归系数 公式(9.6) 截距 a=γ-bχ 公式(9.7) 回归系数t检验 公式(9.8) 回归系数的标准误 公式(9.9) 标准估计误差 公式(9.10) 估计误差平方和 公式(9.11) 两回归系数相关的t检验 公式(9.12) 两回归系数相差的标准误 公式(9.13) 两回归系数的合并方差 符号检验 公式(10.1) 成对资料比较 ,ν=1 公式(10.2) 秩号的中位数 公式(10.3) 两组符号检验 ,ν=1 公式(10.4) 两组符号检验 ,ν=组数-1 秩和检验 公式(10.6) 成对资料比较 公式(10.6) 两组资料求较小R'R'=n1(n1+n2+1)-R 公式(10.7)两组资料比较 公式(10.8) 多组完全随机设计资料的比较 公式(10.9) 多组随机单位组设计资料的比较 公式(10.10) 多组秩和的两两比较 秩相关系数 公式(10.11)Spearman秩相关系数 参照单位分析 公式(10.12) 平均R值 公式(10.13)R的标准误 公式(10.14) R的95%可信限 样本含量的估计 公式(11.1) 两个率比较所需例数 ,1-β=0.5,α=0.05 公式(11.2) 大样本成对资料比较均数所需例数 n=4S2/X2,1-β=0.5,α=0.05 公式(11.3) 小样本成对资料比较均数所需例数 ,1-β=0.5
⑹ 均方差的公式
求均方差。均方差的公式如下:(xi为第i个元素)。
S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根
⑺ 均方差和方差一样么
均方差和方差不一样。
1、含义不同:
(1)均方差即标准差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。
(2)方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
2、反映内容不同:
(1)标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
(2)方差是衡量源数据和期望值相差的度量值。
3、计算方法不同:
(1)标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示:
其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。
⑻ 标准偏差跟均方差的区别及计算公式,它们的关系如何
标准偏差用来衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少, 标准差计算公式:样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。一般用D=E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差,D开根号为均方差